精英家教网 > 高中数学 > 题目详情
10.如图是一个空间几何体的三视图,则该几何体体积是(  )
A.$\frac{1}{3}$B.1C.$\frac{4}{3}$D.$\frac{2}{3}$

分析 由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,代入锥体体积公式,可得答案.

解答 解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,
其底面是一个等腰直角三角形,故S=$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1,
高h=2,
故体积V=$\frac{1}{3}Sh$=$\frac{2}{3}$,
故选:D

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+2ax+alnx,a≤0.
(1)若当a=-2时,求f(x)的单调区间;
(2)若f(x)>$\frac{1}{2}$(2e+1)a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示的散点图,现选用两种回归模型,模型A:使用线性回归,计算相关指数$R_1^2$;模型B:用指数回归,计算出相关指数$R_2^2$,则一定有(  )
A.$R_1^2>R_2^2$B.$R_1^2<R_2^2$C.$R_1^2=R_2^2$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的三边分别是a,b,c,已知$A={30°},c=2\sqrt{3},b=2$,则△ABC的面积为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线C:y2=2px(p>0)的焦点与圆F:x2+y2-4x=0的圆心重合,点A,B,C在该抛物线上,且点F是△ABC的重心,则|FA|+|FB|+|FC|的值是(  )
A.6B.8C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象的一个最高点的坐标为($\frac{π}{3}$,3),且当x1+x2=$\frac{7π}{6}$时,满足f(x1)=-f(x2).
(1)当函数f(x)的周期最大时,求f(x)的单调递增区间;
(2)在(1)的条件下,将函数f(x)的图象上每个点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,再将所得函数图象向左平移$\frac{π}{12}$得到函数g(x)的图象,求函数g(x)在[$\frac{π}{24}$,$\frac{7π}{24}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC中,BC=2,G为△ABC的重心,且满足AG⊥BG,则△ABC 的面积的最大值为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-x2+x+2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a>0,求f(x)在区间(0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在三角形ABC中,三个内角A,B,C所对的边分别为a,b,c,若acosA=bcosB,则三角形ABC一定是(  )三角形.
A.直角B.等边C.钝角D.等腰或直角

查看答案和解析>>

同步练习册答案