精英家教网 > 高中数学 > 题目详情

已知,且θ是第二象限角,求的值.

答案:-2
提示:

由诱导公式与同角关系导出tanθ,tan


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m∈R,且复数z=(2+i)m2-
6m1-i
-2(1-i)在复平面内表示的点为A.
(1)当实数m取什么值时,复数z是纯虚数;
(2)当点A位于第二象限时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+1-2(a>0,且a≠1)设f-1(x)是f(x)的反函数.
(I)若y=f-1(x)在[0,1]上的最大值和最小值互为相反数,求a的值;
(Ⅱ)若y=f-1(x)的图象不经过第二象限,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一次函数y=mx+n.
(Ⅰ)设集合P={-2,-1,1,2,3}和Q={-3,2},分别从集合P和Q中随机取一个数作为m和n,求函数y=mx+n是增函数的概率;
(Ⅱ)实数m,n,满足条件
m+n-1≤0
-1≤m≤1
-1≤n≤1
,求函数y=mx+n在R单调递增,且函数图象经过第二象限的概率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第六次(4月)周测理科数学试卷(解析版) 题型:选择题

已知命题:“””是“函数的图象经过第二象限”的充分不必 要条件,命题是任意实数,若ab,则.则

A.真                             B.“”为真

C.“”为真                        D.均为假命题

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

同步练习册答案