分析 (1)根据数列的递推公式求出公差d,即可求出数列{an}的通项公式,
(2)根据错位相减法即可求出前n项和.
解答 解:∵(a1+a2)+(a2+a3)+…+(an+an+1)=2n(n+1),①
∴(a1+a2)+(a2+a3)+…+(an-1+an)=2n(n-1),②
由①-②可得,an+an+1=4n,③,
令n=n-1,可得an+an-1=4(n-1),④,
由③-④可得2d=4,
∴d=2,
∵a1+a2=4,
∴a1=1,
∴an=1+2(n-1)=2n-1,
(2)$\frac{{a}_{n}}{{2}^{n-1}}$=(2n-1)•($\frac{1}{2}$)n-1,
∴Sn=1•($\frac{1}{2}$)0+3•($\frac{1}{2}$)1+5•($\frac{1}{2}$)2+…+(2n-1)•($\frac{1}{2}$)n-1,
∴$\frac{1}{2}$Sn=1•($\frac{1}{2}$)1+3•($\frac{1}{2}$)2+5•($\frac{1}{2}$)3+…+(2n-3)•($\frac{1}{2}$)n+(2n-1)•($\frac{1}{2}$)n,
∴$\frac{1}{2}$Sn=1+2•($\frac{1}{2}$)1+2•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+…+2•($\frac{1}{2}$)n-1-(2n-1)•($\frac{1}{2}$)n=1+2$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(2n-1)•($\frac{1}{2}$)n=3-(2n+3)•($\frac{1}{2}$)n,
∴Sn=6-(2n+3)•($\frac{1}{2}$)n-1.
点评 本题考查了利用数列的递推公式求出通项公式和利用错位相减法求前n项和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {2,5} | B. | {3,6} | C. | {2,5,6} | D. | {2,3,5,6,8} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com