精英家教网 > 高中数学 > 题目详情
19.如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠DBA=30°,$\sqrt{3}$AB=2BD,PD=AD,PD⊥底面ABCD,E为PC上一点,且PE=$\frac{1}{2}$EC.
(1)证明:PA⊥BD;
(2)若AD=$\sqrt{6}$,求三棱锥E-CBD的体积.

分析 (1)在△ABD中,不妨设AB=2,BD=$\sqrt{3}$,由余弦定理可得AD,则AD2+BD2=BA2,从而得到BD⊥AD,结合PD⊥底面ABCD,得BD⊥PD,再由线面垂直的判定可得BD⊥平面PAD,则PA⊥BD;
(2)过E作EF⊥CD于F,则三棱锥E-CBD的高为EF,由已知可得EF.再由(1)知BD,代入三棱锥E-CBD的体积公式求解.

解答 (1)证明:在△ABD中,由余弦定理可得:AD2=BA2+BD2-2BA•BD•cos∠DBA,
不妨设AB=2,则由已知$\sqrt{3}$AB=2BD,得BD=$\sqrt{3}$,
∴$A{D}^{2}={2}^{2}+(\sqrt{3})^{2}-2×2×\sqrt{3}×\frac{\sqrt{3}}{2}=1$,则AD2+BD2=BA2
∴∠ADB=90°,即BD⊥AD,
又PD⊥底面ABCD,∴BD⊥PD,而AD∩PD=D,
∴BD⊥平面PAD,则PA⊥BD;
(2)解:过E作EF⊥CD于F,则三棱锥E-CBD的高为EF,
由已知可得EF=$\frac{2}{3}PD=\frac{2}{3}AD=\frac{2\sqrt{6}}{3}$.
由(1)知BD=AD$•tan60°=3\sqrt{2}$,
∴三棱锥E-CBD的体积V=$\frac{1}{3}{S}_{△CBD}•EF=\frac{1}{3}×\frac{1}{2}×\sqrt{6}×3\sqrt{2}×\frac{2\sqrt{6}}{3}$=$2\sqrt{2}$.

点评 本题考查直线与平面垂直的判定和性质,考查空间想象能力和思维能力,考查棱锥体积的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x-2x,实数s,t满足f(s)+f(t)=0,a=2s+2t,b=2s+t
(1)当函数f(x)的定义域为[-1,1]时,求f(x)的值域;
(2)求函数关系式b=g(a),并求函数g(a)的定义域D;
(3)在(2)的结论中,对任意x1∈D,都存在x2∈[-1,1],使得g(x1)=f(x2)+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{x≤2}\end{array}}\right.$,则目标函数z=-x+2y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在棱柱ABC-A1B1C1中,点C在平面A1B1C1内的射影点为的A1B1中点O,AC=BC=AA1,∠ACB=90°.
(1)求证:AB⊥平面OCC1
(2)求二面角A-CC1-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某程序框图如图所示,则该程序运行后输出的值是(  )
A.2B.-3C.5D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.曲线y=sinx+cosx在x=$\frac{π}{4}$处切线倾斜角的大小是(  )
A.0B.$\frac{π}{4}$C.-$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ax3-3x2+1,若f(-a)、f(a)、f(3a)成公差不为0的等差数列,则过坐标原点作曲线y=f(x)的切线可以作(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(-sinθ,0),$\overrightarrow{c}$=(cosθ,-1),且(2$\overrightarrow{a}$-$\overrightarrow{b}$)∥$\overrightarrow{c}$,则tanθ等于-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在等腰梯形ABCD中,已知AB∥DC,AB=2CD=4.若$\overrightarrow{AC}$•$\overrightarrow{BD}$=-1,则$\overrightarrow{AD}$•$\overrightarrow{BC}$=7.

查看答案和解析>>

同步练习册答案