精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中AA1=2AC=2BC,D是AA1的中点,CD⊥B1D.
(1)证明:CD⊥B1C1
(2)求二面角A-DB1-C的余弦值.
考点:二面角的平面角及求法
专题:空间位置关系与距离,空间角
分析:(1)由题意知直三棱柱ABC-A1B1C1的侧面为矩形,DC=DC1,CD⊥DC1,由此能证明CD⊥B1C1
(2)以C为原点,CA为x轴,设AA1=2AC=2BC=2,建立空间直角坐标系,利用向量法能求出二面角A-DB1-C的余弦值.
解答: (1)证明:由题意知直三棱柱ABC-A1B1C1的侧面为矩形,
∵D是AA1的中点,∴DC=DC1
又AA1=2A1C1,∴DC12+DC2=CC12
∴CD⊥DC1
而CD⊥B1D,B1D∩C1D=D,
∴CD⊥平面B1C1D,
∵B1C1?平面B1C1D,∴CD⊥B1C1
(2)解:由(1)知B1C1⊥CD,且B1C1⊥C1C,
∴B1C1⊥平面ACC1A1
∴CA,CB,CC1两两垂直,
以C为原点,CA为x轴,设AA1=2AC=2BC=2,
建立空间直角坐标系,
则A(1,0,0),B1(0,1,2),C(0,0,0),D(1,0,1),
AD
=(0,0,1),
B1D
=(1,-1,-1),
DC
=(-1,0,-1),
设平面ADB1的法向量
n
=(x,y,z)

n
AD
=z=0
n
B1D
=x-y-z=0

取x=1,得
n
=(1,1,0)

设平面DB1C的法向量
m
=(a,b,c),
m
B1D
=a-b-c=0
m
DC
=-a-c=0

取a=1,得
m
=(1,2,-1)

cos<
n
m
>=
3
2
6
=
3
2

∴二面角A-DB1-C的余弦值为
3
2
点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=30°,∠A=90°,OB=12,点P在OA上,且OP=2
3
.若过P点作直线截△AOB的两边,使截得的三角形与△AOB相似,则满足以上条件的直线的表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,其面积为S,且b2+c2-a2=
4
3
3
S.
(1)求A;
(2)若a=5
3
,cosB=
4
5
,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:7lg20•(
1
2
lg0.7

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+2ax2+5x+a,g(x)=x2+bx+2,其中x∈R,a,b为常数,已知函数y=f(x)与y=g(x)在x=2处有相同的切线l.求a,b?的值,并写出切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的等比数列{an},首项a1=
1
2
,前n项和为Sn,且S3+a3,S5+a5,S4+a4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1=1,公差d>0,且a2,a3+1,a4+4成等比,分别是等比数列{bn}的第1项,第2项,第3项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意n∈N*均有
c1
a1
+
c2
a2
+…+
cn
an
=bn成立,求c1+c2+…+cn(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(0<a<
5
,0<b<2)与椭圆C2
x2
5
+
y2
4
=1有相同的焦点.直线L:y=k(x+1)与两个椭圆的四个交点,自上而下顺次记为A、B、C、D.
(Ⅰ)求线段BC的长(用k和a表示);
(Ⅱ)是否存在这样的直线L,使线段AB、BC、CD的长按此顺序构成一个等差数列.请说明详细的理由.

查看答案和解析>>

同步练习册答案