精英家教网 > 高中数学 > 题目详情
已知各项均为正数的等比数列{an},首项a1=
1
2
,前n项和为Sn,且S3+a3,S5+a5,S4+a4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)利用等差数列和等比数列的通项公式、前n项和的意义即可得出;
(Ⅱ)由( I)知,nan=
n
2n
,利用错位相减法求数列的前n项和即可得出.
解答: 解::(Ⅰ)设正项等比数列{an}(n∈N*)的公比为q(q>0),又a1=
1
2
,∴an=
1
2
•qn-1
∵S3+a3、S5+a5、S4+a4成等差数列,
∴2(S5+a5)=(S3+a3)+(S4+a4),
即2(a1+a2+a3+a4+2a5)=(a1+a2+2a3)+(a1+a2+a3+2a4),
化简得4a5=a3
∴4a1q4=a1q2,化为4q2=1,
解得q=±
1
2

∵q>0,
∴q=
1
2

∴an=
1
2n

( II)由( I)知,nan=
n
2n

则Tn=
1
2
+
2
22
+
3
23
+…+
n
2n
,①
1
2
Tn=
1
22
+
2
23
+
3
24
+…+
n-1
2n
+
n
2n+1
,②…(8分)
①-②得:
1
2
Tn=
1
2
+
1
22
+…+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
n+2
2n+1

所以Tn=2-
n+2
2n
.…(12分)
点评:本题考查了等差数列和等比数列的通项公式及前n项和公式、“错位相减法”等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
+
b
+
c
=
0
,|
a
|=2,|
b
|=3,|
c
|=
7
,则向量
a
b
的夹角为(  )
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且满足S4=16,a4+a14=34.
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
,求数列{bn}的前n项和为Tn
(3)设数列{cn}的通项公式为cn=
an
an+t
(n∈N+,t≠0),若c1,c2,ck(k≥3,k∈N+)成等差数列,求t和k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+log2
x
3-x

(1)计算s=
2
1
f(x)dx;
(2)设S(n)=
3(2n-1)
2n+1
(n∈N+),用数学归纳法证明:S(n)-S=-
3
2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中AA1=2AC=2BC,D是AA1的中点,CD⊥B1D.
(1)证明:CD⊥B1C1
(2)求二面角A-DB1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列不等式的解集:
(1)6x2-x-1≥0;
(2)-x2+4x-5<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
cos2x+2sinxcosx-
3

(1)求函数f(x)的单调递增区间;
(2)若f(
α
2
-
π
6
)-f(
α
2
+
π
12
)=
6
,且α∈(
π
2
,π),求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,等差数列{an}的公差为2,f(a2+a4+a6+a8+a10)=9,则log3[f(a1)•f(a2)•f(a3)…f(a10)]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R*,且a+2b+3c=6,
(1)求a2+2b2+3c2的最小值;
(2)求证:
a2
1+a
+
2b2
3+b
+
3c2
5+c
9
7

查看答案和解析>>

同步练习册答案