精英家教网 > 高中数学 > 题目详情

已知向量m=(72k)n=(k13,-6),且mn,则k=

[  ]

A1

B.-2

C.-16

D1或-16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,A,B,C所对的边分别为a,b,c.已知向量
m
=(
1
2
,cosA),
n
=(sinA,-
3
2
),且
m
n

(1)求角A的大小;
(2)若a=7,b=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知B=C,2b=
3
a

(1)求cosA的值;
(2)cos(2A+
π
4
)
的值.
(3)若已知向量
m
=(
3
cos
x
4
,cos
x
4
),
n
=(sin
x
4
,cos
x
4
).若
m
n
=
2+
2
4
,求sin(
6
-x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,
3
sinx)
n
=(sinx,-cosx)
,设函数f(x)=
m
n
,若函数g(x)的图象与f(x)的图象关于坐标原点对称.
(Ⅰ)求函数g(x)在区间[-
π
4
π
6
]上的最大值,并求出此时x的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)-g(A)=
3
2
,b+c=7,△ABC的面积为2
3
,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函数f(x)=
m
n
,且f(x)图象上一个最高点的坐标为(
π
12
,2)
,与之相邻的一个最低点的坐标为(
12
,-2)

(1)求f(x)的解析式;
(2)在△ABC中,a,b,c是角A、B、C所对的边,且满足a2+c2-b2=ac,求角B的大小以及f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c.已知向量
m
=(2cos
A
2
,sin
A
2
)
n
=(cos
A
2
,-2sin
A
2
)
m
n
=-1,若a=2
3
,b=2,则c=
21
-
7
+
3
-3
21
-
7
+
3
-3

查看答案和解析>>

同步练习册答案