精英家教网 > 高中数学 > 题目详情
已知
a
=(sinx,1,cox),
b
=(-1,sinx,cox)则
a
+
b
a
-
b
的夹角为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量加减法的坐标运算求出
a
+
b
a
-
b
的坐标,然后利用数量积的坐标运算求
a
+
b
a
-
b
的夹角.
解答: 解:由
a
=(sinx,1,cox),
b
=(-1,sinx,cox),
a
+
b
=(sinx-1,1+sinx,2cosx),
a
-
b
=(sinx+1,1-sinx,0),
a
+
b
a
-
b
的夹角为θ.
则cosθ=
sin2x-1+1-sin2x
|
a
+
b
|2•|
a
-
b
|2
=0

θ=
π
2

故选:D.
点评:本题考查了平面向量的坐标加减法运算,考查了平面向量夹角的求法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=2x+1,x∈{1,2,3,4,5};
(2)y=
x
+1;
(3)y=
1-x2
1+x2

(4)y=-x2-2x+3(-1≤x≤2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)+h(A>0,ω>0,|φ|<π).在一个周期内,当x=
π
12
时,y取得最大值6,当x=
12
时,y取得最小值0.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间与对称中心坐标;
(3)当x∈[-
π
12
π
6
]时,函数y=mf(x)-1的图象与x轴有交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-2≤0
x-y≥0
x≥0,y≥0
,若目标函数z=ax+2by(a>0,b>0)的最大值为1,则
1
a2
+
1
4b2
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定点A(-3,0)、B(3,0),动点P满足
|PA|
|PB|
=2,则
PA
PB
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x为一个三角形内角,则y=sinx+cosx的值域为(  )
A、(-1,1)
B、(1,
2
]
C、(-1,
2
]
D、(0,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线 x2-y2=λ和曲线(x-1)2+y2=1有且仅有两个不同的公共点,则λ满足
 

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
不共线,则下列四组向量中不能作为基底的是(  )
A、
e1
+
e2
e1
-
e2
B、3
e1
-2
e2
与4
e2
-6
e1
C、
e1
+2
e2
e2
+2
e1
D、
e2
e1
+
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:|
a
|=5,|
b
|=4,且
a
b
的夹角为60°,问当且仅当k为何值时,向量k
a
-
b
a
+2
b
垂直?

查看答案和解析>>

同步练习册答案