精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域、值域分别为A,B,且A∩B是单元集,下列命题:
①若A∩B={a},则f(a)=a;
②若f(x)具有奇偶性,则f(x)可能为偶函数;
③若B不是单元集,则满足f[f(x)]=f(x)的x值可能不存在;
④若f(x)不是常数函数,则f(x)不可能为周期函数;其中,正确命题的序号为
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:用构造具体函数的方法来验证每一个命题的真伪,对构造的函数的要求是其能满足命题中的条件,然后以之来判断命题成立与否.
解答: 解:通过 对概念的理解,可以如下判断这四个命题的真假.
①a∈A,即f(a)有定义;a∈B,即存在b∈A使得f(b)=a.这里并不要求f(a)=a;
比如,A={0,1},f(x)=x+1;①不对;
②说可能存在,具体找到一个就行,常数函数f(x)=1因此②成立
③构造一个一一对应的函数如:f(x)=x+1,A={0,1},B={1,2},
要f(f(x))有意义,只有x=0,f(f(0))=f(1)=2≠f(0);.③也成立
④要求A∩B是单元集,周期函数的定义域是无界的,但不一定要连续,构造一个周期函数去否定④,
如A=Z,若x是偶数,则,f(x)=0,若x为奇数,则f(x)=
1
2
,f(x)是周期为2的周期函数,B={0,
1
2
},A∩B={0};
故答案为:②③.
点评:解本题的关键是对概念的理解,以及根据相关的概念构造一个符合题意且又能说明问题的具体函数,这种技巧与做选择题时的特值法差不多,请答题者仔细品味本题中的数学技巧与数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“幸福感指数”是指某个人主观的评价他对自己目前生活状态的满意程度时给出的区间[0,10]内的一个数,该数越接近10表示越满意.为了解某大城市市民的幸福感,随时对该城市的男、女市民各500人进行了调查.调查数据如下表所示.
幸福感指数[0,2)[2,4)[4,6)[6,8)[8,10)
男市民人数1020220125125
女市民人数1010180175125
如果市民幸福感指数达到6,则认为该市民幸福.根据表格,解答下面的问题:
(I)完成下列2×2列联表
(II)试在犯错误概率不超过0.01的前提下能否判定该市市民幸福与否与性别有关?
参考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(k2≥k00.100.010.001
k02.7066.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=3sin(2x+
π
6
)+1的周期、单调区间及最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立.如果实数m、n满足不等式组
m>3
f(m2-6m+23)+f(n2-8n)<0
,那么m2+n2的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=(x2+ax+a)e-x,试确定实数a的值,使f(x)的极小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是
 

①过直线外一点作这条直线的平行平面有无数多个
②过一点作一直线的平行直线有无数条
③过平面外一点,与该平面平行的直线有无数条
④过两条平行线中的一条的任一平面均与另一条直线平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图五面体中,四边形CBB1C1为矩形,B1C1⊥平面ABB1N,四边形ABB1N为梯形,
且AB⊥BB1,BC=AB=AN=
1
2
BB1
=4.
(1)求证:BN⊥平面C1B1N;    
(2)求此五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=1-2sin2(x-
π
6
)的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若|z+i|+|z-i|=4,则复平面内与复数z对应的点的轨迹是(  )
A、线段B、椭圆C、双曲线D、圆

查看答案和解析>>

同步练习册答案