精英家教网 > 高中数学 > 题目详情
1.设变量x、y满足约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则目标函数z=x2+y2的最大值为(  )
A.9B.36C.81D.41

分析 作出可行域,z=x2+y2表示可行域内的点到原点距离的平方,数形结合可得.

解答 解:作出约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,所对应的可行域,
而z=x2+y2表示可行域内的点P到原点距离的平方,
由:$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=3}\end{array}\right.$,解得P(4,5)
数形结合可得最大值为:42+52=41,
故选:D.

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-a|+a.
(1)当a=3时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-3|,?x∈R,f(x)+g(x)≥5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.团购已成为时下商家和顾客均非常青睐的一种省钱、高效的消费方式,不少商家同时加入多家团购网,现恰有三个团购网站在A市开展了团购业务,A市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.
(Ⅰ)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(Ⅱ)从所调查的50家商家中任选两家,用ξ表示这两家商家参加的团购网站数量之差的绝对值,求随机变量ξ的分布列和数学期望;
(Ⅲ)将频率视为概率,现从A市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为η,试求事件“η≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-2ax,a∈R.
(Ⅰ)若函数y=f(x)存在与直线2x-y=0垂直的切线,求实数a的取值范围;
(Ⅱ)设g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有极大值点x1,求证:$\frac{{ln{x_1}}}{x_1}+\frac{1}{{{x_1}^2}}$>a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校学生营养餐由A和B两家配餐公司配送.学校为了解学生对这两家配餐公司的满意度,采用问卷的形式,随机抽取了40名学生对两家公司分别评分.根据收集的80份问卷的评分,得到如图A公司满意度评分的频率分布直方图和如表B公司满意度评分的频数分布表:
满意度
评分分组
频数
[50,60)2
[60,70)8
[70,80)14
[80,90)14
[90,100]2
(Ⅰ)根据A公司的频率分布直方图,估计该公司满意度评分的中位数;
(Ⅱ)从满意度高于90分的问卷中随机抽取两份,求这两份问卷都是给A公司评分的概率;
(Ⅲ)请从统计角度,对A、B两家公司做出评价.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设实数x、y满足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,则z=x+y为(  )
A.有最小值2,无最大值B.有最小值2,最大值3
C.有最大值3,无最小值D.既无最小值,也无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.f(x)=$\frac{{x}^{{n}^{2}}}{{x}^{3n}}$(n∈Z)是偶函数,且y=f(x)在(0,+∞)上是减函数,则n=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆O:x2+y2=1和定点A(2,1),由圆外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系式;
(2)求△OQP面积的最小值;
(3)求||PO|-|PA||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设正数x,y满足log${\;}_{\frac{1}{3}}$x+log3y=m(m∈[-1,1]),若不等式3ax2-18xy+(2a+3)y2≥(x-y)2有解,则实数a的取值范围是(  )
A.(1,$\frac{55}{29}$]B.(1,$\frac{31}{21}$]C.[$\frac{31}{21}$,+∞)D.[$\frac{55}{29}$,+∞)

查看答案和解析>>

同步练习册答案