分析 ${a_{n+1}}={({-1})^n}({{a_n}+1})$,可得a2n+1=a2n+1,a2n=-a2n-1-1.因此a2n+1+a2n-1=0,a2n+2+a2n=-2.利用分组求和即可得出.
解答 解:∵${a_{n+1}}={({-1})^n}({{a_n}+1})$,∴a2n+1=a2n+1,a2n=-a2n-1-1.
∴a2n+1+a2n-1=0,a2n+2+a2n=-2.
∴S2017=a1+(a3+a5)+…+(a2015+a2017)+(a2+a4)+…+(a2014+a2016)
=1+0-2×504
=-1007.
故答案为:-1007.
点评 本题考查了分类讨论方法、分组求和方法、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | 2$\sqrt{2}$ | D. | $\frac{5\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{6}$个长度单位,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) | |
| B. | 向左平移$\frac{π}{18}$个长度单位,再把所得各点的横坐标缩短到原来的$\frac{1}{3}$倍(纵坐标不变) | |
| C. | 向右平移$\frac{π}{18}$个长度单位,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) | |
| D. | 向左平移$\frac{π}{6}$个长度单位,再把所得各点的横坐标缩短到原来的$\frac{1}{3}$倍(纵坐标不变) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 25 | 33 | m | 55 | 75 |
| A. | 46 | B. | 48 | C. | 50 | D. | 52 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com