精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=sin(ωx)(ω>0)的图象关于点($\frac{2π}{3}$,0)对称,且在区间(0,$\frac{π}{14}$)上单调递增,则ω的最大值为6.

分析 根据题意得出$\left\{\begin{array}{l}{\frac{2π}{3}ω=kπ,k∈Z}\\{\frac{π}{14}ω≤\frac{π}{2}}\end{array}\right.$,求出ω的最大值即可.

解答 解:函数f(x)=sinωx的图象关于点($\frac{2π}{3}$,0)对称,且在(0,$\frac{π}{14}$)上单调递增,
∴$\left\{\begin{array}{l}{\frac{2π}{3}ω=kπ,k∈Z}\\{\frac{π}{14}ω≤\frac{π}{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{ω=\frac{3}{2}k,k∈Z}\\{ω≤7}\end{array}\right.$;
ω的最大值为6.
故答案为:6.

点评 本题考查了正弦函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x0∈R,使2${\;}^{{x}_{0}}$+2${\;}^{-{x}_{0}}$=1;命题q:?x∈R,都有lg(x2+2x+3)>0.下列结论中正确的是(  )
A.命题“¬p∧q”是真命题B.命题“p∧¬q”是真命题
C.命题“p∧q”是真命题D.命题“¬p∨¬q”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A(0,3),与双曲线$\frac{{x}^{2}}{14}-\frac{{y}^{2}}{13}$=1有相同的焦点
(1)求椭圆C的方程;
(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(x-$\frac{1}{x}$)(2x+$\frac{1}{x}$)5的展开式中,常数项为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某班主任为了对本班学生的数学和物理成绩进行分析,随机抽取了8位学生的数学和物理成绩如下表.
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
(Ⅰ)通过对样本数据进行初步处理发现,物理成绩y与数学成绩x之间具有线性相关性,求y与x的线性回归方程(系数精确到0.01).
(Ⅱ)当某学生的数学成绩为100分时,估计该生的物理成绩.(精确到0.1分)
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
参考数据:$\sum_{i=1}^{8}({x}_{1}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈457,$\sum_{i=1}^{8}({x}_{1}-\overline{x})({y}_{1}-\overline{y})$≈688,$\sqrt{1050}$≈32.4.$\sqrt{457}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若关于x的方程2sin(2x+$\frac{π}{6}$)=m在[0,$\frac{π}{2}$]上有两个不等实根,则m的取值范围是(  )
A.(1,$\sqrt{3}$)B.[0,2]C.[1,2)D.[1,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.我国古代数学专著《孙子算法》中有“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”如果此物数量在100至200之间,那么这个数128.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里(  )
A.156里B.84里C.66里D.42里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x-2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当$a∈(0,\frac{1}{4})$时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.

查看答案和解析>>

同步练习册答案