精英家教网 > 高中数学 > 题目详情
1.数列{an}的前n项和${S_n}=\frac{n}{n+1}$,数列{bn}的通项公式为bn=n-8,则bnSn的最小值为-4.

分析 由等差数列通项公式求得an=n(n+1),采用“裂项法”即可求得数列的前n项和为Sn,bnSn=(n-8)(1-$\frac{1}{n+1}$)=n+1+$\frac{9}{n+1}$-10,利用基本不等式的性质,即可求得bnSn的最小值

解答 -解:由题意可知:an=2×$\frac{n(n+1)}{2}$=n(n+1),
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
Sn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)=1-$\frac{1}{n+1}$
则bnSn=(n-8)(1-$\frac{1}{n+1}$)=n+1+$\frac{9}{n+1}$-10≥2$\sqrt{(n+1)×\frac{9}{n+1}}$-10=-4,
当且仅当n+1=$\frac{9}{n+1}$,即n=2时取最小值-4,
∴bnSn的最小值-4,
故答案为:-4.

点评 本题考查等差数列通项公式,“裂项法”求数列的前n项和,考查数列与基本不等式相结合,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在$\widehat{AB}$上,且OM∥AC.
(Ⅰ)求证:平面MOE∥平面PAC;
(Ⅱ)求证:平面PAC⊥平面PCB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z=$\frac{1}{1+i}$,则(  )
A.z的实部为-$\frac{1}{2}$B.z的虚部为-$\frac{1}{2}$i
C.|z|=$\frac{1}{2}$D.z的共轭复数为$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组.若第5组抽出的号码为22,则第10组抽出的号码应是(  )
A.45B.46C.47D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若“?x∈(0,+∞),x+$\frac{4}{x}$≥a”与“?x∈R,x2+2x+a=0”都是真命题,则a的取值范围是(  )
A.a≤4B.a≤1C.1≤a≤4D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知m∈R且m<-1,试解关于x的不等式:(m+3)x2-(2m+3)x+m>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的导数
(1)f(x)=(x+1)(x+2)(x+3)
(2)$f(x)={x^2}+\sqrt{x}-{e^x}•cosx$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x0是函数f(x)=3x+$\frac{2}{1-x}$的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列刻画一组数据离散程度的是(  )
A.平均数B.方差C.中位数D.众数

查看答案和解析>>

同步练习册答案