精英家教网 > 高中数学 > 题目详情

湖南省环保研究所对长沙市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻x的关系为,其中a是与气象有关的参数,且,若用每天的最大值作为当天的综合放射性污染指数,并记作.

(Ⅰ)令,求t的取值范围;

(Ⅱ)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

 

【答案】

(Ⅰ) ;(Ⅱ) 当时不超标,当时超标.

【解析】

试题分析:(Ⅰ)由题意容易知最小值为0,然后由基本不等式得,从而可得t的取值范围;(Ⅱ)将转化为关于的函数.然后结合t的取值范围分段求出函数单调性,从而得到其最大值,即.再通过在中解不等式得到时不超标,当时超标的结论.

试题解析:(Ⅰ)当时,,当(当且仅当时取等号)

,故t的取值范围

(Ⅱ)当时,记

因为上递减,在上递增,且.

,解得.

所以当时不超标,当时超标.

考点:1.基本不等式;2.函数的单调性与最值;3.不等式组.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数f(x)与时间x(小时)的关系为f(x)=|
x
x2+1
+
1
3
-a|+2a
,x∈[{0,24}],其中a与气象有关的参数,且a∈[0,
3
4
]
,若用每天f(x)的最大值为当天的综合污染指数,并记作M(a).
(1)令t=
x
x2+1
,x∈[0,24]
,求t的取值范围;
(2)求函数M(a);
(3)市政府规定,每天的综合污染指数不得超过2,试问目前市中心的综合污染指数是多少?是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:

省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=|
x
x2+1
-a|+2a+
2
3
,x∈[0,24],其中a是与气象有关的参数,且a∈[0,
1
2
],若用每天f(x)的最大值作为当天的综合放射性污染指数,并记作M(a).
(1)令t=
x
x2+1
,x∈[0,24],求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时) 的关系为f(x)=|
x
x2+1
-a|+2a+
2
3
,x∈[0,24],其中a是与气象有关的参数,且a∈[0,
1
2
].
(1)令t=
x
x2+1
,x∈[0,24],写出该函数的单调区间,并选择其中一种情形进行证明;
(2)若用每天f(x)的最大值作为当天的综合放射性污染指数,并记作M(a),求M(a);
(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数M(a)是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:

某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=|
x
x2+1
-a|
+2a+
2
3
,x∈[0,24],其中a是与气象有关的参数,且a∈[0,
1
2
].
(1)令t=
x
x2+1
,x∈[0,24],直接写出t的取值范围;(可以不要写演算写过程)
(2)若用每天f(x)的最大值作为当天的综合放射性污染指数,并记作M(a),求M(a);
(3)省政府规定,每天的综合放射性污染指数不超过2称为“环保达标”,试问a应控制在什么范围内才能“环保达标”?

查看答案和解析>>

同步练习册答案