精英家教网 > 高中数学 > 题目详情
若 f(
x
-1)=x-2
x
,则f(x)=
x2-1(x≥-1)
x2-1(x≥-1)
分析:可令t=
x
-1则t≥-1且x=(t+1)2然后将x代入到f(
x
-1)=x-2
x
中求出f(t)即求出了f(x),但要标明定义域.
解答:解:∵f(
x
-1)=x-2
x

∴令t=
x
-1则t≥-1且x=(t+1)2
∴f(t)=t2-1(t≥-1)
∴f(x)=x2-1(x≥-1)
故答案为f(x)=x2-1(x≥-1)
点评:本题主要考查了利用换元法求函数的解析式,属常考题,较易.解题的关键是令t=
x
-1然后求出f(t),但要注意t的范围!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:新疆自治区月考题 题型:解答题

设函数f(x)=x3+a﹣a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[﹣1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[﹣2,2]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省玉溪一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年新疆乌鲁木齐一中高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案