精英家教网 > 高中数学 > 题目详情
不等式组
y≤x+1
y≥x
0≤y≤2
x≥0
,表示的平面区域的面积是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:画出不等式组
y≤x+1
y≥x
0≤y≤2
x≥0
表示的平面区域为等腰梯形及其内部的部分,求得A、B、C各个点的坐标,可得等腰梯形的面积.
解答: 解:不等式组
y≤x+1
y≥x
0≤y≤2
x≥0
表示的平面区域如图所示的阴影部分:
容易求得A(0,1),B(1,2),C(2,2),
不等式组
y≤x+1
y≥x
0≤y≤2
x≥0
表示的平面区域的面积是:
1
2
×2×2-
1
2
×1×1
=
3
2

故答案为
3
2
点评:本题主要考查二元一次不等式组表示平面区域,体现了数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某化肥厂甲、乙两个车间负责包装肥料,在自动包装传送带上每隔30秒抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102,111,89,98,103,98,99;
乙:104,111,87,100,99,98,101.
(1)这种抽样方法是那一种?
(2)将这两组数据用茎叶图表示;
(3)计算这两组数据的平均数和方差,说明那个车间的产品比较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x=(  )
A、4B、1C、10D、11

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥S-ABCD中,底面ABCD为直角梯形,AB垂直于AD和BC,SA⊥面ABCD,SA=AB=BC=2,AD=1.求:
(1)VS-ABCD
(2)SC上是否存在点E,使DE⊥SB?若存在,确定点E的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-
y2
5
=1的左顶点为A,右焦点为F2,过F2作x轴的垂线与双曲线的一个交点为B,直线AB与双曲线的右准线交于点T,若
AT
TB
,则λ等于(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面BCD,BC⊥CD,则图中直角三角形的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如表是一个2×2列联表:则表中a,b的值分别为(  ) 
y1y2合计
x1a2173
x2222547
合计b46120
A、94,72
B、52,50
C、52,74
D、74,52

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2x+3y+4z=1,则x2+y2+z2的最小值是  (  )
A、
1
9
B、
1
13
C、
1
21
D、
1
29

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1
x2
)=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

同步练习册答案