精英家教网 > 高中数学 > 题目详情

已知数列{bn}是首项为3,公比为3的等比数列,且bn1(nN*)

(1)求数列{an}的通项公式;

(2)Samam+1+…+a2m1(mN*)证明:S

答案:
解析:

  解:(1)

  ,∴数列{}是首项为3,公比为3的等比数列,

  ∴4

  ∴6

  (2)1

  10

  

  令,解得故所求的最小值为512


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log
1
4
an
(n∈N*),cn=anbn(n∈N*
(1)求数列{bn}的通项公式;
(2)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
2
,公比为
1
2
的等比数列,sn为数列{an}的前n项和,又bn+5loglog2 (1-sn)=t,常数t∈N*,数列{Cn}满足cn=an×bn
(Ⅰ)若{cn}是递减数列,求t的最小值;
(Ⅱ)是否存在正整数k,使ck,ck+1,ck+2这三项按某种顺序排列后成等比数列?若存在,试求出k,t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通三模)已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列.
(1)若a5=b5,q=3,求数列{an•bn}的前n项和;
(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列.设bn+2=3log
1
4
an
(n∈N*),数列{cn}满足cn=
1
bnbn+1

(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案