精英家教网 > 高中数学 > 题目详情

可以写成:①;②;③;④.其中正确的是

[  ]
A.

①②

B.

②③

C.

③④

D.

①④

答案:D
解析:

向量加法的三角形法首尾顺次连接,而从同一点出发的两个向量的差与连接两个向量的终点且指向被减数的向量对应.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线Ax+By+C=0,
(1)系数为什么值时,方程表示通过原点的直线;
(2)系数满足什么关系时与坐标轴都相交;
(3)系数满足什么条件时只与x轴相交;
(4)系数满足什么条件时是x轴;
(5)设P(x0,y0)为直线Ax+By+C=0上一点,证明:这条直线的方程可以写成A(x-x0)+B(y-y0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

任意一个定义域关于原点对称的函数都可以写成一个奇函数与一个偶函数之和,比如函数f(x)=2x+1可以看成一个奇函数φ(x)与一个偶函数g(x)的和的形式,则那个偶函数为g(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-1|,某算法的程序框如图所示,若输出结果m满足f(2m)<1,则输入的实数t的范围是
-
1
3
<t<0
-
1
3
<t<0
.(注:框图中的赋值符号“=”也可以写成“←”或“:=”)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常数),则称数列{an}为二阶线性递推数列,且定义方程x2=px+q为数列{an}的特征方程,方程的根称为特征根; 数列{an}的通项公式an均可用特征根求得:
①若方程x2=px+q有两相异实根α,β,则数列通项可以写成an=c1αn+c2βn,(其中c1,c2是待定常数);
②若方程x2=px+q有两相同实根α,则数列通项可以写成an=(c1+nc2)αn,(其中c1,c2是待定常数);
再利用a1=m1,a2=m2,可求得c1,c2,进而求得an.根据上述结论求下列问题:
(1)当a1=1,a2=2,an+2=4an+1-4an(n∈N*)时,求数列{an}的通项公式;
(2)当a1=5,a2=13,an+2=5an+1-6an(n∈N*)时,若数列{an+1-λan}为等比数列,求实数λ的值;
(3)当a1=1,a2=1,an+2=an+1+an(n∈N*)时,求Sn=a1Cn1+a2Cn2+…+anCnn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)执行如图所示的程序框图,输出的S值为(  )

(注:框图中的赋值符号“=”也可以写成“←”或“:=”)

查看答案和解析>>

同步练习册答案