精英家教网 > 高中数学 > 题目详情
8.若x,y满足$\left\{\begin{array}{l}x-y+2≤0\\ x+y-7≤0\\ x≥1\end{array}\right.$,则 $\frac{y}{x}$的取值范围是[$\frac{9}{5}$,6].

分析 先画出约束条件的可行域,然后分析$\frac{y}{x}$的几何意义,结合图象,用数形结合的思想,即可求解.

解答 解:满足约束条件$\left\{\begin{array}{l}x-y+2≤0\\ x+y-7≤0\\ x≥1\end{array}\right.$的可行域,
如下图所示:
又∵$\frac{y}{x}$表示的是可行域内一点与原点连线的斜率
当x=$\frac{5}{2}$,y=$\frac{9}{2}$时,$\frac{y}{x}$有最小值$\frac{9}{5}$;
当x=1,y=6时,$\frac{y}{x}$有最大值6
故答案为:[$\frac{9}{5}$,6]

点评 平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知过点(-2,0)的直线与圆O:x2+y2-4x=0相切与点P(P在第一象限内),则过点P且与直线$\sqrt{3}$x-y=0垂直的直线l的方程为(  )
A.x+$\sqrt{3}$y-2=0B.x+$\sqrt{3}$y-4=0C.$\sqrt{3}$x+y-2=0D.x+$\sqrt{3}$y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知m是直线,α,β是两个互相垂直的平面,则“m∥α”是“m⊥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.“墨子号”是由我国完全自主研制的世界上第一颗空间量子科学实验卫星,于2016年8月16日发射升空.“墨子号”的主要应用目标是通过卫星中转实现可覆盖全球的量子保密通信.量子通信是通过光子的偏振状态,使用二进制编码,比如,码元0对应光子偏振方向为水平或斜向下45度,码元1对应光子偏振方向为垂直或斜向上45度.如图所示
编码方式1编码方式2
码元0



码元1

信号发出后,我们在接收端将随机选择两种编码方式中的一种来解码,比如,信号发送端如果按编码方式1发送,同时接收端按编码方式1进行解码,这时能够完美解码;信号发送端如果按编码方式1发送,同时接收端按编码方式2进行解码,这时无法获取信息.如果发送端发送一个码元,那么接收端能够完美解码的概率是$\frac{1}{2}$;如果发送端发送3个码元,那么恰有两个码元无法获取信息的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b∈R,则“b≠0”是“复数a+bi是纯虚数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):
A444.555.566
B4.5566.56.5777.5
C555.566777.588
(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;
(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;
(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c的最小值(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a+b=M(a>0,b>0),M为常数,且ab的最大值为2,则M等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.i是虚数单位,复数$\frac{2+{i}^{3}}{1-i}$=(  )
A.$\frac{3+i}{2}$B.$\frac{1+3i}{2}$C.$\frac{1+i}{2}$D.$\frac{3+2i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直四棱柱ABCD-A1B1C1D1中,AB=4,AA1=2$\sqrt{3}$,底面ABCD为菱形,且∠BAD=60°.
(1)求证:平面ACC1A1⊥平面BDC1
(2)求三棱锥D1-C1BD的体积.

查看答案和解析>>

同步练习册答案