精英家教网 > 高中数学 > 题目详情
“x=1”是“(x-2)2<4”的(  )
A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件
分析:结合不等式的解法,利用充分条件和必要条件的定义进行判断.
解答:解:由(x-2)2<4,得-2<x-2<2,即0<x<4,
当x=1时,满足0<x<4,
当x=2时,满足0<x<4,但x=1不成立.
∴“x=1”是“(x-2)2<4”的充分不必要条件.
故选:A.
点评:本题主要考查充分条件和必要条件的判断,利用不等式的解法是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+x+1(a∈R)
(1)若f(x)是R上的单调函数,求a的取值范围;   
(2)若x=1是f(x)的一个极值点,求f(x)在x∈[t,1](t<1)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①函数f(x)=2cos2(
π
4
-x)-1
是最小正周期为π的偶函数;
②函数y=cos(
π
4
-2x)+1
可以改写为y=sin(
π
4
+2x)+1

③函数y=cos(
π
4
-2x)+1
的图象关于直线x=
8
对称;
④函数y=tanx的图象的所有的对称中心为(kπ,0),k∈Z;
⑤将函数y=sin2x的图象先向左平移
π
4
个单位,然后纵坐标不变,横坐标伸长为原来
的2倍,所得图象的函数解析式是y=sin(x+
π
4
)

其中所有正确的命题的序号是
②③
②③
.(请将正确的序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)试判断函数f(x)=log
12
(x-1)
是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;
(2)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.
(Ⅱ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(2)已知 T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;
(Ⅱ)是否存在实数k,使函数f(x)=coskx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )

查看答案和解析>>

同步练习册答案