精英家教网 > 高中数学 > 题目详情
6.已知△ABC内角A,B,C的对边分别是a,b,c,若cosB=$\frac{1}{4}$,b=2,sinC=2sinA,则△ABC的面积为(  )
A.$\sqrt{15}$B.$\frac{\sqrt{15}}{2}$C.$\frac{\sqrt{15}}{6}$D.$\frac{\sqrt{15}}{4}$

分析 利用正弦定理和余弦定理求出a、c的值,再求△ABC的面积.

解答 解:△ABC中,cosB=$\frac{1}{4}$,b=2,sinC=2sinA,
由正弦定理得c=2a;
由余弦定理得b2=a2+c2-2accosB=a2+4a2-2a•2a•$\frac{1}{4}$=4a2=4,
解得a=1,∴c=2;
∴△ABC的面积为S=$\frac{1}{2}$acsinB=$\frac{1}{2}$×1×2×$\sqrt{1{-(\frac{1}{4})}^{2}}$=$\frac{\sqrt{15}}{4}$.
故选:D.

点评 本题考查了正弦定理和余弦定理以及三角形面积的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-1|,关于x的不等式f(x)<3-|2x+1|的解集记为A.
(Ⅰ)求A;
(Ⅱ)已知a,b∈A,求证:f(ab)>f(a)-f(b).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题p:?x∈[0,+∞),ex≥1,则¬p是(  )
A.?x0∉[0,+∞),${e^{x_0}}<1$B.?x∉[0,+∞),ex<1
C.?x0∈[0,+∞),${e^{x_0}}<1$D.?x∈[0,+∞),ex<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系下,曲线C1:$\left\{\begin{array}{l}{x=2t+2a}\\{y=-t}\end{array}\right.$(t为参数),曲线C2:$\left\{\begin{array}{l}{x=2sinθ}\\{y=1+2cosθ}\end{array}\right.$(θ为参数),若曲线C1,C2有公共点,则实数a的取值范围是1-$\sqrt{5}$≤a≤1+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=a(2cos2$\frac{x}{2}$+sinx)+b.
(1)当a=1时,求f(x)的单调递增区间及对称轴方程;
(2)当a>0时,且x∈[0,π]时,f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n为奇数}\\{{a}_{n}-3n,n为偶数}\end{array}\right.$
(Ⅰ)设bn=a2n-$\frac{3}{2}$,求证:数列{bn}是等比数列;
(Ⅱ)设Sn=$\sum_{k=t}^{n}{a}_{k}$,求满足Sn>0的所有正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线T:$\frac{{x}^{2}}{4}$-y2=1,过点B(-2,0)的直线交双曲线T于点A(点A不为双曲线顶点),若AB中点Q在直线y=x上,点P为双曲线T上异于A,B的任意一点且不为双曲线的顶点,直线AP,BP分别交直线y=x于M,N两点,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的值为(  )
A.-$\frac{8}{3}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若m、n表示直线,α、β表示平面,下列命题正确的是(  )
A.若m∥α,α∥β则m∥βB.m∥α,m∥n则n∥αC.若m∥α,n⊥α则m⊥nD.若m∥α,n?α则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a=2}|,|{\overrightarrow b}|=1$,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,则$|{\overrightarrow a+2\overrightarrow b}|$=2.

查看答案和解析>>

同步练习册答案