分析 (Ⅰ)直接利用等比数列的定义结合已知数列递推式证明数列{bn}是等比数列;
(Ⅱ)由(Ⅰ)求出a2n,得到a2n-1,进一步求出S2n,再由S2n-1=S2n-a2n得到S2n-1,由函数的单调性求出满足Sn>0的所有正整数n.
解答 (Ⅰ)证明:设${b}_{n}={a}_{2n}-\frac{3}{2}$,
∵$\frac{{b}_{n+1}}{{b}_{n}}=\frac{{a}_{2n+2}-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{\frac{1}{3}{a}_{2n+1}+(2n+1)-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}$=$\frac{\frac{1}{3}({a}_{2n}-6n)+(2n+1)-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}$=$\frac{\frac{1}{3}{a}_{2n}-\frac{1}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{1}{3}$.
∴数列{bn}是以${a}_{2}-\frac{3}{2}=-\frac{1}{6}$为首项,以$\frac{1}{3}$为公比的等比数列;
(Ⅱ)解:由(Ⅰ)得,${b}_{n}={a}_{2n}-\frac{3}{2}=-\frac{1}{6}•(\frac{1}{3})^{n-1}=-\frac{1}{2}(\frac{1}{3})^{n}$,即${a}_{2n}=-\frac{1}{2}•(\frac{1}{3})^{n}+\frac{3}{2}$,
由${a}_{2n}=\frac{1}{3}{a}_{2n-1}+(2n-1)$,得${a}_{2n-1}=3{a}_{2n}-3(2n-1)=-\frac{1}{3}(\frac{1}{3})^{n-1}-6n+\frac{15}{2}$.
∴${a}_{2n-1}+{a}_{2n}=-\frac{1}{2}[(\frac{1}{3})^{n-1}+(\frac{1}{3})^{n}]-6n+9=-2$$•(\frac{1}{3})^{n}-6n+9$.
S2n=(a1+a2)+(a3+a4)+…+(a2n-1+a2n)
=$-2[\frac{1}{3}+(\frac{1}{3})^{2}+…+(\frac{1}{3})^{n}]-6(1+2+…+n)+9n$
=$-2•\frac{\frac{1}{3}[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}-6•\frac{n(n+1)}{2}+9n$=$(\frac{1}{3})^{n}-1-3{n}^{2}+6n=(\frac{1}{3})^{n}-3(n-1)^{2}+2$.
显然,当n∈N*时,{S2n}单调递减,
又当n=1时,${S}_{2}=\frac{7}{3}$>0,当n=2时,${S}_{4}=-\frac{8}{9}$<0,
∴当n≥2时,S2n<0;
${S}_{2n-1}={S}_{2n}-{a}_{2n}=\frac{3}{2}•(\frac{1}{3})^{n}-\frac{5}{2}-3{n}^{2}+6n$,
同理当且仅当n=1时,S2n-1>0.
综上,满足Sn>0的所有正整数n为1和2.
点评 本题考查数列递推式,考查了数列的分组求和与等比数列的前n项和,考查数列的函数特性,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | n | B. | 2n-1 | C. | n-2 | D. | n-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{15}$ | B. | $\frac{\sqrt{15}}{2}$ | C. | $\frac{\sqrt{15}}{6}$ | D. | $\frac{\sqrt{15}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{1}{3})$ | B. | $(\frac{1}{3},\frac{1}{2})$ | C. | $(\frac{1}{2},\frac{2}{3})$ | D. | $(\frac{2}{3},1)$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com