精英家教网 > 高中数学 > 题目详情
在△ABC中,已知a2-b2=c(a-c),则角B=
 
考点:余弦定理
专题:解三角形
分析:利用余弦定理表示出cosB,将已知等式变形代入求出cosB的值,即可确定出B的度数.
解答: 解:∵在△ABC中,a2-b2=-c(a-c),即a2+c2-b2=-ac,
∴cosB=
a2+c2-b2
2ac
=-
1
2

∵B为三角形内角,
∴B=120°.
故答案为:120°
点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC,中a,b,c分别是A,B,C的对边,关于x的方程x2cosC+4xsinC+6<0的解集为空集.
(1)求角C的最大值;
(2)若c=
7
2
,S=
3
3
2
,求当C最大时a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

sin21°+sin22°+…+sin290°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2-mx+2=0的解集是A,方程x2+6x-n=0的解集是B,且A∩B={2},那么m+n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={2,4,5}的子集个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定数列{cn},如果存在实常数p、q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)若数列{an}满足a1=2,an+an+1=3•2n(n∈N*).
①求数列{an}前2015项的和;
②已知数列{an}是“M类数列”,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是椭圆
y2
2
+x2
=1的上焦点,离心率为
2
5
5

(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于点M,若
MA
=m
FA
MB
=n
FB
,求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b
2x+1+2
是奇函数.
(1)求b的值;
(2)判断函数f(x)在R上的单调性并加以证明;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是递增数列,an=n2+λn,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案