精英家教网 > 高中数学 > 题目详情
若a>3,则函数f(x)=x3-ax2+1 在(0,2)上的零点个数是( )
A.0
B.1
C.2
D.3
【答案】分析:根据a>3,分析导函数的符号,确定函数的单调性,验证f(0),f(2)的符号,从而可知函数f(x)=x3-ax2+1 在(0,2)上的零点个数.
解答:解:f′(x)=3x2-2ax=x(3x-2a)=3x(x-),
∵a>3,
∴f′(x)<0,
即函数函数f(x)=x3-ax2+1 在(0,2)上单调递减,
而f(0)=1>0,f(2)=8-4a+1=9-4a<0,
∴函数f(x)=x3-ax2+1 在(0,2)上零点有一个.
故选B.
点评:此题是基础题.考查函数零点的判定定理,以及利用导数研究函数的单调性,考查学生灵活应用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a>3,则函数f(x)=x3-ax2+1 在(0,2)上的零点个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的函数,给出下列命题:
①若f′(1)=0,则x=1是f(x)的极值点;
②若1<a<3,则函数f(x)=
(3-a)x-3,x≤7
ax-6,x>7
是单调函数;
③若f(x)为奇函数,又f(x+1)为偶函数,则f(1)+f(3)+…+f(19)=f(2)+f(4)+…+f(20);
④若f(x)=xn+1(n∈N*),且f(x)在x=1处的切线与x轴交于点(xn,0),则lgx1+lgx2+…+lgx99=-2
其中正确命题的序号是
③④
③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>3,则函数f(x)=x2-ax+1在区间(0,2)上恰好有
 
 个零点.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌市高三上学期调研考试理科数学试卷(解析版) 题型:填空题

若a>3,则函数f(x)=x2-ax+1在区间(0,2)上恰好有       个零点

 

查看答案和解析>>

同步练习册答案