精英家教网 > 高中数学 > 题目详情
设圆C与两圆(x+2+y2=4,(x﹣2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(),F(,0),且P为L上动点,求||MP|﹣|FP||的最大值及此时点P的坐标.
 解:(1)两圆的半径都为2,两圆心为F1(﹣,0)、F2,0),
由题意得:|CF1|+2=|CF2|﹣2或|CF2|+2=|CF1|﹣2,
∴||CF2|﹣|CF1||=4=2a<|F1F2|=2=2c,
可知圆心C的轨迹是以原点为中心,焦点在x轴上,且实轴为4,焦距为2的双曲线,
因此a=2,c=,则b2=c2﹣a2=1,
所以轨迹L的方程为﹣y2=1;
(2)过点M,F的直线l的方程为y=(x﹣),
即y=﹣2(x﹣),代入﹣y2=1,
解得:x1=,x2=
故直线l与双曲线L的交点为T1,﹣),T2),
因此T1在线段MF外,T2在线段MF内,
故||MT1|﹣|FT1||=|MF|==2,
||MT2|﹣|FT2||<|MF|=2,
若点P不在MF上,则|MP|﹣|FP|<|MF|=2,
综上所述,|MP|﹣|FP|只在点T1处取得最大值2,
此时点P的坐标为(,﹣).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆C与两圆(x+
5
2+y2=4,(x-
5
2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(
3
5
5
4
5
5
),F(
5
,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省成都市高二(上)期末数学模拟试卷2(解析版) 题型:解答题

设圆C与两圆(x+2+y2=4,(x-2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学试卷(理科)(解析版) 题型:解答题

设圆C与两圆(x+2+y2=4,(x-2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

设圆C与两圆(x+2+y2=4,(x﹣2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(),F(,0),且P为L上动点,求||MP|﹣|FP||的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:广东省高考真题 题型:解答题

设圆C与两圆(x+2+y2=4,(x-2+y2=4中的一个内切,另一个外切。
(1)求圆C的圆心轨迹L的方程;
(2)已知点M(),F(,0)且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标。

查看答案和解析>>

同步练习册答案