精英家教网 > 高中数学 > 题目详情
已知公差不为0的等差数列{an}的首项为2,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式.
(2)令bn=
1
(an+1)2-1
,(n∈N+),求数列{bn}的前n项和Sn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)利用等差数列及等比数列的性质列出方程求得公差d,即可得出结论;
(2)bn=
1
(an+1)2-1
=
1
(2n+1)2-1
=
1
4
1
n
-
1
n+1
),利用裂项相消法求和即可.
解答: 解:(1)设等差数列{an}的公差为d,由a1,a2,a4成等比数列得
(a2)2=a1•a4
又a1=2,∴(a1+d)2=a1(a1+3d),
∵d≠0,∴d=2,
∴an=2n.
(2)∵bn=
1
(an+1)2-1
=
1
(2n+1)2-1
=
1
4
1
n
-
1
n+1
),
∴sn=
1
4
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=
1
4
(1-
1
n+1
)=
n
4(n+1)
点评:本题主要考查等差数列及等比数列的性质和裂项相消法求和等知识,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanθ=2,则
sin(
π
2
+θ)-cos(π-θ)
sin(
π
2
+θ)-sin(π-θ)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,BC=1,AB=2,∠ABC=60°,四边形ACDE为矩形,且平面ACDE⊥平面ABC,DC=1.
(Ⅰ)求证:BC⊥平面ACDE;
(Ⅱ)若点M为线段ED的中点,求平面MAB与平面BCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:
2x-4
-
x+5
=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ω•x+φ)(A>0,ω>0,|φ|<
π
2
))的部分图象如图所示.
(1)请根据图象求出y=Asin(ω•x+φ)的解析式;
(2)当x∈[
5
6
π,
13
12
π]时,求出函数的最大值和最小值,并指出取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
3x-2,x≥2
-2,x<2
的值的程序框图如图所示.
(1)指出程序框图中的错误之处并重新绘制解决该问题的程序框图;
(2)写出对应程序语句,且回答下面提出的问题:
问题1,要使输出的值为7,输入的x的值应为多少?
问题2,要使输出的值为正数,输入的x应满足什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+3x.
(1)若x=3是f(x)的一个极值点,求f(x)在区间[2,a]上的最大值和最小值;
(2)若f(x)在x∈[1,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-2alnx+(a-2)x,a∈R.
(I)当a=1时,求函数f(x)图象在点(1,f(1))处的切线方程;
(Ⅱ)当a<0时,讨论函数f(x)的单调性;
(Ⅲ)是否存在实数a,对任意的x1,x2∈(0,+∞)且x1≠x2
f(x2)-f(x1)
x2-x1
>a恒成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且∠AOP=β,β∈(0,
π
2
),∠AOQ=α,α∈[0,π).
(1)若点Q的坐标是 (m,
4
5
),其中m<0,求cos(π-α)+sin(-α)的值.
(2)设P(
3
2
1
2
),函数f(α)=sin(α+β),求f(α)的值域.

查看答案和解析>>

同步练习册答案