精英家教网 > 高中数学 > 题目详情
2.在等差数列中,a9=3,则此数列前17项和等于(  )
A.51B.34C.102D.不能确定

分析 由等差数列{an}的性质可得:a1+a17=2a9=6,再利用前n项和公式即可得出.

解答 解:由等差数列{an},a9=3,
∴a1+a17=2a9=6,
∴此数列前17项的和S17=$\frac{17({a}_{1}+{a}_{17})}{2}$=17×3=51.
故选:A.

点评 本题考查了等差数列的性质及其前n项和公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.($\frac{64}{27}$)${\;}^{\frac{1}{2}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$=$\frac{8\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足:对任意的n∈N*均有an+1=kan+2k-2,其中k为不等于0与1的常数,若ai∈{-272,-32,-2,8,88,888},i=2、3、4、5,则满足条件的a1所有可能值的和为$\frac{2402}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ln(ex+e-x)+x2,则使得f(x)>f(2x-1)成立的x的取值范围是($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,AB=3,BC=4,D是BC的中点,且$∠B=\frac{π}{3}$,则sin∠ADC=(  )
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{{3\sqrt{21}}}{14}$C.$\frac{{\sqrt{39}}}{26}$D.$\frac{{\sqrt{7}}}{28}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}的前n项和为Sn,a1=1,Sn=$\frac{{{a_{n+1}}-1}}{2}({n∈{N^*}})$,
(1)求{an}的通项公式;
(2)等差数列{bn}的各项均为正数,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面是矩形,PA⊥底面ABCD,PA=AD=2AB=2,E、F分别为BC与PD的中点.
(1)求证:PE⊥DE;
(2)求直线CF与平面PAC的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)为定义域为R的奇函数,且f(x)=f(2-x),当x∈[0,1]时,f(x)=sinx,则函数g(x)=|cos(πx)|-f(x)在区间$[-\frac{5}{2},\frac{9}{2}]$上的所有零点的和为(  )
A.6B.7C.13D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中错误的是(  )
A.如果平面α外的直线a不平行于平面α,平面α内不存在与a平行的直线
B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γ
C.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
D.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交

查看答案和解析>>

同步练习册答案