精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,平面,底面是菱形,.

(Ⅰ)求证:平面

       (Ⅱ)若所成角的余弦值;

       (Ⅲ)当平面与平面垂直时,求的长.

证明:(Ⅰ)因为四边形ABCD是菱形,

所以AC⊥BD.

又因为PA⊥平面ABCD.

所以PA⊥BD.

所以BD⊥平面PAC.

(Ⅱ)设AC∩BD=O.

因为∠BAD=60°,PA=PB=2,

所以BO=1,AO=CO=.

如图,以O为坐标原点,建立空间直角坐标系O—xyz,则

 


P(0,—,2),A(0,—,0),B(1,0,0),C(0,,0).

所以

设PB与AC所成角为,则

.

(Ⅲ)由(Ⅱ)知

设P(0,-,t)(t>0),

设平面PBC的法向量,

所以

所以

同理,平面PDC的法向量

因为平面PCB⊥平面PDC,

所以=0,即

解得

所以PA=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、N、D三点的平面交PC于M.
(1)求证:DP∥平面ANC;
(2)求证:M是PC中点;
(3)求证:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为4的菱形,且∠BAD=60°,N是PB的中点,过A,D,N的平面交PC于M,E是AD的中点.
(1)求证:BC⊥平面PEB;
(2)求证:M为PC的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥中,侧面

是正三角形,且与底面垂直,底面是边长为2的菱形,中点,过三点的平面交. 

(1)求证:;   (2)求证:中点;(3)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,在四棱锥中,底面为菱形,的中点。

   (1)点在线段上,

试确定的值,使平面

   (2)在(1)的条件下,若平面

面ABCD,求二面角的大小。

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,在四棱锥中,底面为菱形,的中点。

   (1)点在线段上,

试确定的值,使平面

   (2)在(1)的条件下,若平面

面ABCD,求二面角的大小。

查看答案和解析>>

同步练习册答案