精英家教网 > 高中数学 > 题目详情
3.把函数f(x)=$\sqrt{3}$cos2x-sin2x的图象向右平移$\frac{π}{12}$个单位得到函数y=g(x)的图象,则函数y=g(x)在下列哪个区间是单调递减的(  )
A.[-$\frac{π}{2}$,0]B.[-π,0]C.[-$\frac{π}{4}$,$\frac{π}{4}$]D.[0,$\frac{π}{2}$]

分析 将函数函数f(x)=$\sqrt{3}$cos2x-sin2x化简为f(x)=2cos(2x+$\frac{π}{6}$),利用函数y=Asin(ωx+φ)的图象变换规律得到函数y=g(x)的图象,结合余弦函数的单调性可得结论.

解答 解:函数f(x)=$\sqrt{3}$cos2x-sin2x=2cos(2x+$\frac{π}{6}$),向右平移$\frac{π}{12}$个单位得到2cos(2(x$-\frac{π}{12}$)$+\frac{π}{6}$)=2cos2x=g(x),
由y=cosx的一个单调递减区间为[0,π],
∴g(x)=2cos2x的一个单调递减区间为[0,$\frac{π}{2}$],
故选D

点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知P(x,y)为区域$\left\{\begin{array}{l}{y^2}-4{x^2}≤0\\ a≤x≤0\end{array}\right.$内的任意一点,当该区域的面积为4时,z=x-2y的最小值是(  )
A.$-5\sqrt{2}$B.$-3\sqrt{2}$C.$-\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2-x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是$0<a≤\frac{1}{2}$或a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左,右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴.若|F1F2|=12,|PF2|=5,则该双曲线的离心率为(  )
A.3B.$\frac{3}{2}$C.$\frac{12}{5}$D.$\frac{13}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,在△ABC内随机选取一点P,则△PBC的面积不超过△ABC面积一半的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=-2,an+1=2an+4.
( I)求证{an+4}是等比数列,并求数列{an}的通项公式;
( II)求数列{an}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.现有4人参加抽奖活动,每人依次从装有4张奖票(其中2张为中奖票)的箱子中不放回地随机抽取一张,直到2张中奖票都被抽出时活动结束,则活动恰好在第3人抽完后结束的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}$CD=1,如图2,将△ABD沿BD折起来,使平面ABD⊥平面BCD,设E为AD的中点,F为AC上一点,O为BD的中点.
(Ⅰ)求证:AO⊥平面BCD;、
(Ⅱ)若三棱锥A-BEF的体积为$\frac{\sqrt{2}}{18}$,求二面角A-BE-F的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a<b<0,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a2<abC.a2<b2D.$\frac{1}{a-b}<\frac{1}{a}$

查看答案和解析>>

同步练习册答案