精英家教网 > 高中数学 > 题目详情
3.抛物线y2=12x上与焦点的距离等于9的点的坐标(  )
A.$(6,±6\sqrt{2})$B.$(6\sqrt{2},±6)$C.$(12,±6\sqrt{2})$D.$(6\sqrt{2},±12)$

分析 求出抛物线焦点到准线的距离,然后求解点的坐标即可.

解答 解:抛物线y2=12x焦点到准线的距离为:6,所求抛物线上的点的横坐标为6,纵坐标为:±6$\sqrt{2}$.
抛物线y2=12x上与焦点的距离等于9的点的坐标(6,±6$\sqrt{2}$).
故选:A.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.全集U=R,集合A={x|-1≤x≤1且x≠0},B={x|x<-1或x>4},则A∩(∁UB)=(  )
A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-1≤x≤1且x≠0}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正项数列{an}的前n项和为Sn,当n≥2时,(an-Sn-12=SnSn-1,且a1=1,设bn=log2$\frac{{a}_{n+1}}{6}$,则bn等于(  )
A.2n-3B.2n-4C.n-3D.n-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}中,a1=1,a2=3,an+2+an=an+1,则a2014=(  )
A.-3B.-1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x3-3x2+1是减函数的区间为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正项等比数列{an}中,a6=a5+2a4,若存在两项am,an使得$\sqrt{{a_m}{a_n}}$=4a1,则$\frac{1}{m}$+$\frac{2}{n}$的最小值是(  )
A.$\frac{{3+2\sqrt{2}}}{6}$B.1C.$\frac{11}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果$a+\frac{1}{a}=2$,那么${a^2}+\frac{1}{a^2}$的值是(  )
A.2B.4C.0D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l过点(0,1),且倾斜角为$\frac{π}{6}$,当此直线与抛物线x2=4y交于A,B时,|AB|=(  )
A.$\frac{16}{3}$B.16C.8D.$\frac{{16\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线y=b与函数f(x)=$\frac{1}{3}$x3-4x+4的图象有3个交点,则b的取值范围(-$\frac{4}{3}$,$\frac{28}{3}$).

查看答案和解析>>

同步练习册答案