精英家教网 > 高中数学 > 题目详情
11.椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$的长轴长为(  )
A.2B.4C.3D.6

分析 利用椭圆方程求解椭圆的长轴长即可.

解答 解:椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$的长轴长为:6.
故选:D.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.“墨子号”是由我国完全自主研制的世界上第一颗空间量子科学实验卫星,于2016年8月16日发射升空.“墨子号”的主要应用目标是通过卫星中转实现可覆盖全球的量子保密通信.量子通信是通过光子的偏振状态,使用二进制编码,比如,码元0对应光子偏振方向为水平或斜向下45度,码元1对应光子偏振方向为垂直或斜向上45度.如图所示
编码方式1编码方式2
码元0



码元1

信号发出后,我们在接收端将随机选择两种编码方式中的一种来解码,比如,信号发送端如果按编码方式1发送,同时接收端按编码方式1进行解码,这时能够完美解码;信号发送端如果按编码方式1发送,同时接收端按编码方式2进行解码,这时无法获取信息.如果发送端发送一个码元,那么接收端能够完美解码的概率是$\frac{1}{2}$;如果发送端发送3个码元,那么恰有两个码元无法获取信息的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.i是虚数单位,复数$\frac{2+{i}^{3}}{1-i}$=(  )
A.$\frac{3+i}{2}$B.$\frac{1+3i}{2}$C.$\frac{1+i}{2}$D.$\frac{3+2i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在复平面内,复数$z=\frac{2i}{1+i}$,则$\overline z$对应的点的坐标位于第(  )象限.
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l过点P(2,0),斜率为$\frac{4}{3}$,直线l和抛物线y2=2x相交于A,B两点,设线段AB的中点为M,求:
(1)点M的坐标;
(2)线段AB的长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)={log_{\frac{1}{2}}}({{x^2}-2ax+3})$.
(1)若f(x)定义域为R,求实数a的取值范围;
(2)若f(x)值域为R,求实数a的取值范围;
(3)是否存在a∈R,使f(x)在(-∞,2)上单调递增,若存在,求出a的取值范围;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直四棱柱ABCD-A1B1C1D1中,AB=4,AA1=2$\sqrt{3}$,底面ABCD为菱形,且∠BAD=60°.
(1)求证:平面ACC1A1⊥平面BDC1
(2)求三棱锥D1-C1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知p:实数x满足x2-4ax+3a2≤0,其中a<0;q:实数x满足x2+5x+4<0,且p是q的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有下列四个命题:
(1)若α、β均为第一象限角,且α>β,则sin α>sin β;
(2)若函数y=2cos(ax-$\frac{π}{3}$)的最小正周期是4π,则a=$\frac{1}{2}$;
(3)函数y=$\frac{sin2x-sinx}{sinx-1}$是奇函数;
(4)函数y=sin(x-$\frac{π}{2}$)在[0,π]上是增函数.
(5)函数f(x)=sin2x+$\sqrt{3}$sin xcos x在区间[$\frac{π}{4}$,$\frac{π}{2}$]上的最大值是$\frac{3}{2}$.
其中正确命题的序号为(4)(5).

查看答案和解析>>

同步练习册答案