ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP 0£¨x£©=a 0£¬P k+1£¨x£©=xP k£¨x£©+a k+1£¨k=0£¬1£¬2£¬¡£¬n£1£©.ÀûÓøÃËã·¨£¬¼ÆËãP 3£¨x 0£©µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãP10£¨x 0£©µÄÖµ¹²ÐèÒª________´ÎÔËËã.
½âÎö:ÓÉÌâÒâÖªµÀx0 kµÄÖµÐèÒªk-1´ÎÔËËã,¼´½øÐÐk-1´Îx0µÄ³Ë·¨ÔËËã¿ÉµÃµ½x0 kµÄ½á¹û¶ÔÓÚP3(x0)=a0x03+a1x02+a2x0+a3ÕâÀïa0x03=a0¡Áx0¡Áx0¡Áx0½øÐÐÁË3´ÎÔËËã,a1x02=a1¡Áx0¡Áx0½øÐÐÁË2´ÎÔËËã,a2x0½øÐÐ1´ÎÔËËã,×îºóa0x03,a1x02,a2x0,a3Ö®¼äµÄ¼Ó·¨ÔËËã½øÐÐÁË3´ÎÕâÑùP3(x0)×ܹ²½øÐÐÁË3+2+1+3=9´ÎÔËËã.
¶ÔÓÚPn(x0)=a0x0n+a1x0 n-1+¡+an×ܹ²½øÐÐÁËn+n-1+n-2+¡+1=
´Î.
³Ë·¨ÔËËã¼°n´Î¼Ó·¨ÔËËã×ܹ²½øÐÐÁË
+n=
´Î.
ÓɸĽøËã·¨¿ÉÖª£º
Pn(x0)=x0Pn-1(x0)+an,P n-1(x0)=x0P n-2(x0)+a n-1,¡,P1(x0)=P0(x0)+a1,P0(x0)=a0.
ÔËËã´ÎÊý´ÓºóÍùǰËãºÍΪ£º2+2+¡+2=2n´Î.
´ð°¸:
n(n+3) 2n
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÈ«ÓÅÉè¼ÆÑ¡ÐÞÊýѧ£2-2Ëս̰æ Ëս̰æ ÌâÐÍ£º022
ÒÑÖªn´ÎÿÏîʽPn(x)£½a0xn£«a1xn£1£«¡£«an£1x£«an£®
Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËã
(k£½2£¬3£¬4£¬¡£¬n)µÄÖµÐèÒªk£1´Î³Ë·¨£¬¼ÆËãP3(x0)µÄÖµ¹²ÐèÒª9´ÎÔËËã(6´Î³Ë·¨£¬3´Î¼Ó·¨)£¬ÄÇô¼ÆËãP10(x0)µÄÖµ¹²ÐèÒª_________´ÎÔËË㣮
ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP0(x)£½a0£¬Pk+1(x)£½xPk(x)£«ak+1(k£½0£¬1£¬2£¬¡£¬n£1)£®ÀûÓøÃËã·¨£¬¼ÆËãP3(x0)µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãP10(x0)µÄÖµ¹²ÐèÒª_________´ÎÔËË㣮
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com