精英家教网 > 高中数学 > 题目详情
梯形ABCD中,ADBCDCBC,∠B = 60°,AB =BCEAB的中点.求证:△ECD为等边三角形.

图1-1-21

思路分析:一般在梯形中给出了一腰的中点,常添加的辅助线有:①过这一点作底边的平行线,由平行线等分线段定理推论得另一腰的中点;②可延长DE(或CE)与底边相交,构造全等三角形.

证明:连结AC,过点E作EFADDCF.?

∵梯形ABCD,∴ADBC.∴ADEFBC.?

又∵EAB的中点,∴FDC的中点

(经过梯形一腰的中点与底平行的直线平分另一腰).?

DCBC,EFDC.?

ED=EC(线段垂直平分线上的点到线段两端点的距离相等).?

∴△EDC为等腰三角形.?

AB =BC,∠B =60°,?

∴△ABC是等边三角形.?

∴∠ACB =60°.?

又∵EAB边中点,?

CE平分∠ACB.?

∴∠1=∠2=30°.

∴∠DEF=30°.

∴∠DEC=60°.?

又∵ED=EC,

∴△DEC为等边三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AD∥BC,DA⊥AB,AD=3,AB=4,BC=
3
,点E在线段AB的延长线上.若曲线段DE(含两端点)为某曲线L上的一部分,且曲线L上任一点到A、B两点的距离之和都相等.
(1)建立恰当的直角坐标系,求曲线L的方程;
(2)根据曲线L的方程写出曲线段DE(含两端点)的方程;
(3)若点M为曲线段DE(含两端点)上的任一点,试求|MC|+|MA|的最小值,并求出取得最小值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网精英家教网已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)在直角梯形ABCD中,AD∥BC,AB=1,AD=
3
,AB⊥BC,CD⊥BD,如图1.把△ABD沿BD翻折,使得平面A′BD⊥平面BCD,如图2.

(Ⅰ)求证:CD⊥A′B;
(Ⅱ)求三棱锥A′-BDC的体积;
(Ⅲ)在线段BC上是否存在点N,使得A′N⊥BD?若存在,请求出
BN
BC
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC 把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上,如图2所示,点E,F分别为线段PC,CD的中点.
(I) 求证:平面OEF∥平面APD;
(II)求直线CD⊥与平面POF
(III)在棱PC上是否存在一点M,使得M到点P,O,C,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE交BA的延长线于E,AC交BD于F.
(I)求证:△AFB≌△DFC;
(II)求证:DE•DC=AE•BD.

查看答案和解析>>

同步练习册答案