精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的前n项和为Sn,且a2=3,S5=25.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{1}{{\sqrt{{S_n}•{S_{n+1}}}}}$,n∈N*,记数列{bn}的前n项和为Tn,证明:Tn<1.

分析 (1)设等差数列{an}的首项为a1,公差为d.运用等差数列的通项公式,可得首项和公差的方程,解方程即可得到所求通项公式;
(2)由等差数列的求和公式,可得Sn,计算${b_n}=\frac{1}{{\sqrt{{n^2}•{{(n+1)}^2}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,再由数列的求和方法:裂项相消求和,以及不等式的性质,即可得证.

解答 解:(1)设等差数列{an}的首项为a1,公差为d.
∵a2=3,S5=25,∴${a_1}+d=3,\frac{{5(2{a_1}+4d)}}{2}=25$,
解得 a1=1,d=2,
∴an=2n-1,n∈N+
(2)证明:∵an=2n-1,
∴前n项和为Sn=$\frac{1}{2}$n(1+2n-1),
即${S_n}={n^2}$,
∴${b_n}=\frac{1}{{\sqrt{{n^2}•{{(n+1)}^2}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴Tn=b1+b2+b3+…+bn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})$=$1-\frac{1}{n+1}<1$.

点评 本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,以及不等式的性质,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.把412(5)化为7进制数为212(7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:
 喜欢旅游不喜欢旅游合计
女性   
男性   
合计   
(2)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(1,0),点P是椭圆C上一动点,若动点P到点的距离的最大值为b2
(1)求椭圆C的方程,并写出其参数方程;
(2)求动点P到直线l:x+2y-9=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设{an}(n∈N*)是各项为正数的等比数列,q是其公比,Tn是其前n项的积,且T5<T6,T6=T7>T8,则下列结论错误的是(  )
A.0<q<1B.a7=1
C.T6与T7均为Tn的最大值D.T9>T5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在股票买卖过程中,经常会用各种曲线来描述某一只股票的变化趋势,其中一种曲线是即时价格曲线y=f(x),一种是平均价格曲线y=g(x).例如:f(2)=3表示开始交易后2小时的即时价格为3元,g(2)=4表示开始交易后2小时内所有成交股票的平均价格为4元.下列给出的四个图象中,实线表示y=f(x),虚线表示y=g(x).其中可能正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若$a=\sqrt{3}$,c=2,$cosB=\frac{1}{3}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函数f(x)在x=1处有极值为10,求b的值;
(2)若a=-4,f(x)在x∈[0,2]上单调递增,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+2ax+1,a≠0.
(Ⅰ) 当a=1时,解不等式f(x)>4;
(Ⅱ) 若函数f(x)在区间(1,2)上恰有一个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案