| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 画出约束条件的可行域,利用指数式恒成立,转化求解a的最小值即可.
解答
解:变量x,y满足不等式组$\left\{\begin{array}{l}{3x+y-15≤0,}&{\;}\\{x-3y-5≤0,}&{\;}\\{x≥a,}&{\;}\end{array}\right.$的可行域如图:
变量x,y满足不等式组$\left\{\begin{array}{l}{3x+y-15≤0,}&{\;}\\{x-3y-5≤0,}&{\;}\\{x≥a,}&{\;}\end{array}\right.$
使得y≤3x恒成立,
可知可行域的A是最优解,此时3x取得最大值,由$\left\{\begin{array}{l}{x=a}\\{3x+y-15=0}\end{array}\right.$,
可得A(a,15-3a),
15-3a≤3a,此时a≥2,
变量x,y满足不等式组$\left\{\begin{array}{l}{3x+y-15≤0,}&{\;}\\{x-3y-5≤0,}&{\;}\\{x≥a,}&{\;}\end{array}\right.$
使得y≥3x恒成立的实数a的最小值为2.
故选:C.
点评 本题考查线性规划的简单应用,函数的最值以及恒成立条件的转化,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$+1 | B. | $\sqrt{6}$+$\sqrt{2}$ | C. | $\sqrt{6}$+2 | D. | $\sqrt{3}+$$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com