精英家教网 > 高中数学 > 题目详情
9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且经过点(2,0)
(Ⅰ)求椭圆C的方程
(Ⅱ)若与坐标轴不垂直的直线l经过椭圆C的左焦点F(-c,0),且与椭圆C交于不同两点A,B,问是否存在常数λ,(λ为实数),使|AB|=λ|AF||BF|恒成立,若存在,请求出λ的值,若不存在,请说明理由.

分析 (Ⅰ)由题意,a=2,c=$\sqrt{3}$,b=1,即可求椭圆C的方程;
(Ⅱ)直线l的方程为x=my-$\sqrt{3}$,与椭圆方程联立,消去x得:(m2+4)y2-2$\sqrt{3}$my-1=0,利用弦长公式、一元二次方程的根与系数的关系,即可得出结论.

解答 解:(Ⅰ)由题意,a=2,c=$\sqrt{3}$,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(Ⅱ)F(-$\sqrt{3}$,0),设A(x1,y1),B(x2,y2),直线l的方程为x=my-$\sqrt{3}$,
与椭圆方程联立,消去x得:(m2+4)y2-2$\sqrt{3}$my-1=0,
y1+y2=$\frac{2\sqrt{3}m}{{m}^{2}+4}$,y1y2=-$\frac{1}{{m}^{2}+4}$,
∴|AB|=$\sqrt{1+{m}^{2}}$|y1-y2|=$\frac{4({m}^{2}+1)}{{m}^{2}+4}$,
∵|AF||BF|=|y1y2|(1+m2)=$\frac{1+{m}^{2}}{{m}^{2}+4}$,
∴|AB|=4|AF||BF|,
∴存在常数λ=4,使|AB|=λ|AF||BF|恒成立.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、弦长公式、一元二次方程的根与系数的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设sinα+cosα=$\frac{1}{3}$,α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求sin3α-cos3α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,则此几何体的体积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知10a=2,b=lg5,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某地区对高一年级学生的瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.现随机抽取某学校高一学生共40人,下表为该批学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
视觉
听觉
视觉记忆能力
偏低中等偏高超常
听觉
记忆
能力
偏低0751
中等183b
偏高2a01
超常0211
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为$\frac{2}{5}$.
(1)试确定a、b的值;
(2)将抽取所得学生的频率视为概率,从该地区高二年级学生中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的分布列与数学期望Eξ及方差Dξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数y=f(x),x∈D,若常数C满足C>0,且函数y=f(x)在x∈D上的值域是y=$\frac{C^2}{f(x)}$,在x∈D上的值域的子集,则称函数f(x)在D上的几何平均数为C.
(1)已知f(x)=lnx,求函数f(x)在[e,e2]上的几何平均数;
(2)若函数f(t)=-2t2-at+1(a<-1)在区间[$\frac{1}{2}$,1]上的几何平均数为$\frac{{\sqrt{{a^2}+8}}}{2}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点F是抛物线C:y2=x的焦点,点S是抛物线C上在第一象限内的一点,且|SF|=$\frac{5}{4}$.
(1)求点S的坐标;
(2)以S为圆心的动圆与x轴分别交于两点A,B,延长SA,SB分别交抛物线C于M,N两点,若直线MN与y轴上的截距b∈(-$\frac{1}{2}$,$\frac{3}{2}}$),求△SMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=x3-$\frac{1}{2}$x2-2x+5.求函数f(x)的单调递增、单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y≤0}\\{y-2≤0}\end{array}\right.$,设z=2x+y,则z的最大值是6.

查看答案和解析>>

同步练习册答案