精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式=1 的两个焦点是F1,F2,点P在该椭圆上.若|PF1|-|PF2|=2,则△PF1F2的面积是________.


分析:先由椭圆的方程求出|F1F2|=2,再由|PF1|-|PF2|=2,求出|PF1|=3,|PF2|=1,由此能够推导出△PF2F1是直角三角形,即可求解三角形的面积.
解答:∵=1∴|PF1|+|PF2|=4,2c=2
∵|PF1|-|PF2|=2,可得|PF1|=3,|PF2|=1,
因为12+(22=9,
∴△PF2F1是直角三角形,
△PF1F2的面积|PF2|×|F1F2|=×1×2=
故答案为:
点评:本题考查椭圆的性质,判断出△PF2F1是直角三角形能够简化运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点为F1(-2
2
,0)
F2(2
2
,0)
,P为椭圆上一点,满足∠F1PF2=60°.
(1)当直线l过F1与椭圆C交于M、N两点,且△MF2N的周长为12时,求C的方程;
(2)求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州二模)已知椭圆E的两个焦点分别为F1(-1,0)、F2(1,0),点C(1,
3
2
)
在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若点P在椭圆E上,且满足
PF1
PF2
=t,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:填空题

已知椭圆+=1的两个焦点是F1F2,P在该椭圆上,|PF1|-|PF2|=2,则△PF1F2的面积是    .

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市西城区高三(上)期末数学试卷(理科)(解析版) 题型:填空题

已知椭圆=1 的两个焦点是F1,F2,点P在该椭圆上.若|PF1|-|PF2|=2,则△PF1F2的面积是   

查看答案和解析>>

同步练习册答案