精英家教网 > 高中数学 > 题目详情
4.{an}是无穷数列,若{an}是二项式(1+2x)n(n∈N+)展开式各项系数和,则$\underset{lim}{n→∞}$($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$)=$\frac{1}{2}$.

分析 先利用二项式定理求得an=3n,再利用无穷递缩等比数列的各项和,求得结果.

解答 解:若{an}是二项式(1+2x)n(n∈N+)展开式各项系数和,则an=3n
∴$\underset{lim}{n→∞}$($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$)=$\underset{lim}{n→∞}$($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$)=$\frac{\frac{1}{3}}{1-\frac{1}{3}}$=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题主要考查二项式定理的应用,求无穷递缩等比数列的各项和,数列的极限,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知-π<x<0,$sinx+cosx=\frac{1}{5}$.
(1)求sinx-cosx的值; 
(2)求$\frac{3si{n}^{2}\frac{x}{2}-2sin\frac{x}{2}cos\frac{x}{2}+co{s}^{2}\frac{x}{2}}{tanx+\frac{1}{tanx}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中曲线部分是圆弧,则此几何体的表面积为(  )
A.10+2πB.12+3πC.20+4πD.16+5π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a-2)2=1,点A(0,3),若圆C上存在点M,满足|MA|=2|MO|(O为坐标原点),则实数a的取值范围是(  )
A.[-3,0]B.(-∞,-3]∪[0,+∞)C.[0,3]D.(-∞,0]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若0<x<y<1,则(  )
A.3y<3xB.log0.5x<log0.5yC.cosx<cosyD.sinx<siny

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x-2x,实数s,t满足f(s)+f(t)=0,a=2s+2t,b=2s+t
(1)当函数f(x)的定义域为[-1,1]时,求f(x)的值域;
(2)求函数关系式b=g(a),并求函数g(a)的定义域D;
(3)在(2)的结论中,对任意x1∈D,都存在x2∈[-1,1],使得g(x1)=f(x2)+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如果将函数f(x)=sin(3x+φ)(-π<φ<0)的图象向左平移$\frac{π}{12}$个单位所得到的图象关于原点对称,那么φ=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{1}{x}+klnx$,k≠0.
(Ⅰ)当k=2时,求函数f(x)切线斜率中的最大值;
(Ⅱ)若关于x的方程f(x)=k有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某程序框图如图所示,则该程序运行后输出的值是(  )
A.2B.-3C.5D.-1

查看答案和解析>>

同步练习册答案