相关习题
 0  139858  139866  139872  139876  139882  139884  139888  139894  139896  139902  139908  139912  139914  139918  139924  139926  139932  139936  139938  139942  139944  139948  139950  139952  139953  139954  139956  139957  139958  139960  139962  139966  139968  139972  139974  139978  139984  139986  139992  139996  139998  140002  140008  140014  140016  140022  140026  140028  140034  140038  140044  140052  266669 

科目: 来源:新课标教材全解高中数学人教A版必修1 人教A版 题型:044

已知方程|x|-ax-1=0仅有一个负根,则a的取值范围是________.

查看答案和解析>>

科目: 来源:新课标教材全解高中数学人教A版必修1 人教A版 题型:044

已知映射f:A→B中,A=B={(x,y)|x∈R,y∈R},f:A中的元素(x,y)对应到B中的元素(3x-2y+1,4x+3y-1).

(1)是否存在这样的元素(a,b)使它的象仍是自己?若存在,求出这个元素;若不存在,说明理由.

(2)判断这个映射是不是一一映射?

查看答案和解析>>

科目: 来源:新课标教材全解高中数学人教A版必修1 人教A版 题型:044

已知集合A=R,集合B={y|y≥1},x∈A,对应法则f:x→y=x2-2x+2,求f:A→B是A到B的映射吗?是一一映射吗?若不是,如何改动集合A(集合B和对应法则不变),使之成为映射和一一映射?

查看答案和解析>>

科目: 来源:新课标教材全解高中数学人教A版必修1 人教A版 题型:044

设集合A={a,b,c},B={-1,0,1},映射f:A→B满足f(a)-f(b)=f(c).

求映射f:A→B的个数.

查看答案和解析>>

科目: 来源:新课标教材全解高中数学人教A版必修1 人教A版 题型:044

集合A={a,b},集合B={c,d,e}.

(1)试建立一个由A到B的映射;

(2)由A到B的映射共有多少个?

查看答案和解析>>

科目: 来源:设计必修一数学(人教A版) 人教A版 题型:044

函数概念的发展历程

  17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.

  “function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.

  莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.

  当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.

  随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.

  综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.

你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?

1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?

2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?

查看答案和解析>>

科目: 来源:设计必修一数学(人教A版) 人教A版 题型:044

下列对应是不是从集合A到集合B的映射,为什么?

(1)A={x∈R|x>0},B=R,对应法则是“求平方根”;

(2)A={平面α内的圆},B={平面α内的矩形},对应法则是“作圆的内接矩形”.

查看答案和解析>>

科目: 来源:设计必修一数学(人教A版) 人教A版 题型:044

下列对应是不是从集合A到集合B的映射,为什么?

(1)A=R,B={x∈R|x≥0},对应法则是“求平方”;

(2)A=R,B={x∈R|x>0},对应法则是“求平方”.

查看答案和解析>>

科目: 来源:中学教材全解 高中数学 必修1(人教A版) 人教A版 题型:044

(开放探究题)集合A={a,b,c},B={-1,0,1},映射f:A→B,满足f(a)-f(b)=f(c),求映射f:A→B的个数.

查看答案和解析>>

科目: 来源:中学教材全解 高中数学 必修1(人教A版) 人教A版 题型:044

设A={1,2,3,m},B={4,7,n4,n2+3n},对应关系f:x→y=px+q,是从集合A到集合B的一个映射,已知m、n∈N*,1的象是4,7的原象是2,试求p、q、m、n的值.

查看答案和解析>>

同步练习册答案