科目: 来源:江西省南昌市2012届高三调研测试数学理科试题 题型:044
已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a,存在m,n∈N+使得am+1=bn成立,其中a,b均为正整数,且a1<b1<a2<b2<a3;
(1)求数列{an},{bn}的通项公式;
(2)设函数f(x)=bmx+bm-1x2+…+b1xm,
(x)是函数f(x)的导函数;令Sm=
(1),求Sm(用含n的代数式表示)(上下标)
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学理科试题 题型:044
如图M为的△ABC的中线AD的中点,过M的直线分别与边AB,AC交于点P,Q,设
=x
,
=y
,记y=f(x)
(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,(x∈[0,1]),若对于任意x1∈[
,1],总存在x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围;
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学理科试题 题型:044
如图,在三棱锥ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O为AC中点.
(1)求直线A1C与平面A1AB所成角的正弦值;
(2)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学理科试题 题型:044
某化妆品生产企业为了占有更多的市场份额,已在2011年度进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足3-x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件.已知2011年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用.若将每件化妆品的售价定为:其生产成本的1.5倍与“平均每件促销费的一半”之和,则当年生产的化妆品正好能销完.
(1)将2011年的利润y(万元)表示为促销费t(万元)的函数
(2)该企业2011年的促销费投入多少元时,企业的年利润最大?
(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学理科试题 题型:044
已知函数f(x)=lnx-ax-3(a≠0).
(1)讨论函数f(x)的单调性;
(2)若对于任意的a∈[1,2],函数g(x)=x3+
[m-2
(x)]在区间(a,3)上有最值,求实数m的取值范围
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学理科试题 题型:044
已知向量
=(sinA,cosA),
=(cosB,sinB),且
·
=sin2C,其中A,B,C分别为△ABC的三边a,b,c所对的角.
(1)求角C的大小;
(2)已知A=75°,c=
(cm),求△ABC的面积
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学文科试题 题型:044
已知f(x)=ax-lnx,x∈(0,e],其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的单调区间和极值;
(2)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学文科试题 题型:044
如图M为的△ABC的中线AD的中点,过M的直线分别与边AB,AC交于点P,Q,设
=x
,
=y
记y=f(x)
(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,(x∈[0,1]),若对于任意x1∈[,1],总存在x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围;
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学文科试题 题型:044
已知数列{an}为等比数列,a3=18,a6=486,对于满足0≤k<10的整数k,数列b1,b2,……b10,由
bn=
确定,且记T=a1b1+a2b2+…+a10b10.
(1)求数列{an}的通项公式;
(2)当k=3时,求313-
的值
查看答案和解析>>
科目: 来源:江西省南昌市2012届高三调研测试数学文科试题 题型:044
如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点.
(1)求证:BC⊥平面PAB
(2)求点C到平面PAB的距离
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com