相关习题
 0  155804  155812  155818  155822  155828  155830  155834  155840  155842  155848  155854  155858  155860  155864  155870  155872  155878  155882  155884  155888  155890  155894  155896  155898  155899  155900  155902  155903  155904  155906  155908  155912  155914  155918  155920  155924  155930  155932  155938  155942  155944  155948  155954  155960  155962  155968  155972  155974  155980  155984  155990  155998  266669 

科目: 来源: 题型:解答题

每年的三月十二日,是中国的植树节,林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根据抽测结果,画出甲、乙两种树苗高度的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;
(2)设抽测的10株甲种树苗高度平均值为x,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;
(3)若小王在甲种树苗中随机领取了5株进行种植,用样本的频率分布估计总体分布,求小王领取到的“良种树苗”的株数X的分布列.

查看答案和解析>>

科目: 来源: 题型:解答题

某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:

API
 

 

 

 

 

 

 

 
空气质量
 

 

 
轻微污染
 
轻度污染
 
中度污染
 
中度重污染
 
重度污染
 
天数
 
4
 
13
 
18
 
30
 
9
 
11
 
15
 
 
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω。在区间[0,100]对企业没有造成经济损失;在区间对企业造成经济损失成直线模型(当API为150时造成的 经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的 经济损失为2000元;
(1)试写出是S(ω)的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
P(K2 ≥ k0)
 
0.25
 
0.15
 
0.10
 
0.05
 
0.025
 
0.010
 
0.005
 
0.001
 
k0
 
1.323
 
2.072
 
2.706
 
3.841
 
5.024
 
6.635
 
7.879
 
10.828
 

 

 
附:

 
 
非重度污染
 
重度污染
 
合计
 
供暖季
 
 
 
 
 
 
 
非供暖季
 
 
 
 
 
 
 
合计
 
 
 
 
 
100
 
 

查看答案和解析>>

科目: 来源: 题型:解答题

一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验;若少于2件合格品,则不能通过检验,也不再抽检. 假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为元,求的概率分布及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两
部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必
定会中靶,且投中靶内各点是随机的.
(1)求该同学在一次投掷中获得环的概率;
(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为,求
(2)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目: 来源: 题型:解答题

某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成.规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性大?

查看答案和解析>>

科目: 来源: 题型:解答题

某电视台“挑战60秒”活动规定上台演唱:
(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).

(2)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(3)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
①求此人中一等奖的概率;
②设此人所得奖金为,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

下图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天

(1)求此人到达当日空气质量优良的概率;
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望
(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明).

查看答案和解析>>

科目: 来源: 题型:解答题

地为绿化环境,移栽了银杏树棵,梧桐树棵.它们移栽后的成活率分别
,每棵树是否存活互不影响,在移栽的棵树中:
(1)求银杏树都成活且梧桐树成活棵的概率;
(2)求成活的棵树的分布列与期望.

查看答案和解析>>

科目: 来源: 题型:解答题

第十二届全国人民代表大会第二次会议和政协第十二届全国委员会第二次会议,2014年3月在北京召开.为了做好两会期间的接待服务工作,中国人民大学学生实践活动中心从7名学生会干部(其中男生4人,女生3人)中选3人参加两会的志愿者服务活动.
(1)所选3人中女生人数为,求的分布列及数学期望:
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

同步练习册答案