科目: 来源: 题型:解答题
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.![]()
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有
名学生被考官L面试,求
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:解答题
某单位从一所学校招收某类特殊人才.对
位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
一般 | 良好 | 优秀 | |
| 一般 | |||
| 良好 | |||
| 优秀 |
查看答案和解析>>
科目: 来源: 题型:解答题
某单位从一所学校招收某类特殊人才.对
位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:![]()
例如,表中运动协调能力良好且逻辑思维能力一般的学生有
人.由于部分数据丢失,只知道从这
位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为
.
(1)求
,
的值;
(2)从参加测试的
位学生中任意抽取
位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;
(3)从参加测试的
位学生中任意抽取
位,设运动协调能力或逻辑思维能力优秀的学生人数为
,求随机变量
的分布列及其数学期望
.
查看答案和解析>>
科目: 来源: 题型:解答题
已知正方形ABCD的边长为2,E,F,G,H分别是边AB,BC,CD,DA的中点.
(1)从C,D,E,F,G,H这六个点中,随机选取两个点,记这两个点之间的距离的平方为
,求概率P
.
(2)在正方形ABCD内部随机取一点P,求满足
的概率.
查看答案和解析>>
科目: 来源: 题型:解答题
2014年2月21日,《中共中央关于全面深化改革若干重大问题的决定》明确:坚持计划生育的基本国策,启动实施一方是独生子女的夫妇可生育两个孩子的政策.为了解某地区城镇居民和农村居民对“单独两孩”的看法,某媒体在该地区选择了3600人调查,就是否赞成“单独两孩”的问题,调查统计的结果如下表:
| 赞成 | 反对 | 无所谓 | |
| 农村居民 | 2100人 | 120人 | y人 |
| 城镇居民 | 600人 | x人 | z人 |
查看答案和解析>>
科目: 来源: 题型:解答题
“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为
,乙组能使生物成活的概率为
,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;
(3)若甲乙两小组各进行2次试验,设试验成功的总次数为
,求
的期望.
查看答案和解析>>
科目: 来源: 题型:解答题
图是某市
月
日至
日的空气质量指数趋势图,空气质量指数(
)小于
表示空气质量优良,空气质量指数大于
表示空气重度污染,某人随机选择
月
日至
月
日中的某一天到达该市,并停留
天.![]()
(1)求此人到达当日空气质量重度污染的概率;
(2)设
是此人停留期间空气重度污染的天数,求
的分布列与数学期望.
查看答案和解析>>
科目: 来源: 题型:解答题
对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.![]()
(1)图中纵坐标
处刻度不清,根据图表所提供的数据还原
;
(2)根据图表的数据按分层抽样,抽取
个元件,寿命为
之间的应抽取几个;
(3)从(2)中抽出的寿命落在
之间的元件中任取
个元件,求事件“恰好有一个寿命为
,一个寿命为
”的概率.
查看答案和解析>>
科目: 来源: 题型:解答题
年龄在60岁(含60岁)以上的人称为老龄人,某地区老龄人共有35万,随机调查了该地区700名老龄人的健康状况,结果如下表:
| 健康指数 | 2 | 1 | 0 | -1 |
| 60岁至79岁的人数 | 250 | 260 | 65 | 25 |
| 80岁及以上的人数 | 20 | 45 | 20 | 15 |
查看答案和解析>>
科目: 来源: 题型:解答题
某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有
、
两个定点投篮位置,在
点投中一球得2分,在
点投中一球得3分.其规则是:按先
后
再
的顺序投
篮.教师甲在
和
点投中的概率分别是
,且在
、
两点投中与否相互独立.
(1)若教师甲投篮三次,试求他投篮得分X的分布列和数学期望;
(2)若教师乙与甲在A、B点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com