相关习题
 0  155866  155874  155880  155884  155890  155892  155896  155902  155904  155910  155916  155920  155922  155926  155932  155934  155940  155944  155946  155950  155952  155956  155958  155960  155961  155962  155964  155965  155966  155968  155970  155974  155976  155980  155982  155986  155992  155994  156000  156004  156006  156010  156016  156022  156024  156030  156034  156036  156042  156046  156052  156060  266669 

科目: 来源: 题型:解答题

甲与乙两人掷硬币,甲用一枚硬币掷3次,记正面朝上的次数为;乙用这枚硬币掷2次,记正面朝上的次数为
(1)分别求的期望;
(2)规定:若,则甲获胜;若,则乙获胜,分别求出甲和乙获胜的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人。
(1)根据以上数据建立列联表;
(2)能否在犯错误不超过0.05的前提下认为该药物有效?
参考


0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
  (

查看答案和解析>>

科目: 来源: 题型:解答题

数学试题中有12道单项选择题,每题有4个选项。某人对每道题都随机选其
中一个答案(每个选项被选出的可能性相同),求答对多少题的概率最大?并求出此种情况下概
率的大小.(可保留运算式子)

查看答案和解析>>

科目: 来源: 题型:解答题

某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(1)设所选3人中女生人数为,求的分布列及数学期望;
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

甲,乙两人进行射击比赛,每人射击次,他们命中的环数如下表:


5
8
7
9
10
6

6
7
4
10
9
9
(Ⅰ)根据上表中的数据,判断甲,乙两人谁发挥较稳定;
(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

对关于的一元二次方程……,解决下列两个问题:
(1)若是从三个数中任取的一个数,是从三个数中任取的一个数,求方程有两个不相等实根的概率;
(2)若是从区间任取的一个数,是从区间任取的一个数,求方程有两个不相等实根的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.

 
 员工号
    1
    2
    3
    4
   甲组
  件数
   9
    11
    1l
    9
 
 员工号
    1
    2
    3
    4
   乙组
  件数
   9
    8
    10
    9
(1)用茎叶图表示两组的生产情况;
(2)求乙组员工生产件数的平均数和方差;
(3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率.
(注:方差,其中为x1,x2, ,xn的平均数)

查看答案和解析>>

科目: 来源: 题型:解答题

某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:

(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、黄球、绿球的概率各是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100 天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

查看答案和解析>>

同步练习册答案