相关习题
 0  17003  17011  17017  17021  17027  17029  17033  17039  17041  17047  17053  17057  17059  17063  17069  17071  17077  17081  17083  17087  17089  17093  17095  17097  17098  17099  17101  17102  17103  17105  17107  17111  17113  17117  17119  17123  17129  17131  17137  17141  17143  17147  17153  17159  17161  17167  17171  17173  17179  17183  17189  17197  266669 

科目: 来源:四川省高考真题 题型:解答题

(a>0,且a≠1),g(x)是f(x)的反函数,
(Ⅰ)设关于x的方程在区间[2,6]上有实数解,求t的取值范围;
(Ⅱ)当a=e(e为自然对数的底数)时,证明:
(Ⅲ)当0<a≤时,试比较|-n|与4的大小,并说明理由.

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0) 相交于A、B、C、D四个点,
(Ⅰ)求r的取值范围;
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

查看答案和解析>>

科目: 来源:0103 模拟题 题型:解答题

已知三次函数f(x)=ax3+bx2+cx。
(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(2)在(1)的条件下,若对于区间[-3,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤t,求实数t的最小值;
(3)当-1≤x≤1时,|f′(x)|≤1,试求a的最大值,并求a取得最大值时f(x)的表达式。

查看答案和解析>>

科目: 来源:广东省高考真题 题型:解答题

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用

查看答案和解析>>

科目: 来源:北京模拟题 题型:解答题

已知函数f(x)=ex-ex,
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)对于函数h(x)=x2与g(x)=elnx,是否存在公共切线y=kx+b(常数k,b)使得h(x)≥kx+b和g(x)≤kx+b在函数h(x),g(x)各自定义域上恒成立?若存在,求出该直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:江西省高考真题 题型:解答题

设f(x)=x3+mx2+nx,
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)的单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)

查看答案和解析>>

科目: 来源:0120 模拟题 题型:单选题

已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值为3,那么此函数在[-2,2]上的最小值是
[     ]
A.-37
B.-29
C.-5
D.2

查看答案和解析>>

科目: 来源:贵州省模拟题 题型:解答题

已知函数f(x)=2lnx-x2
(1)若方程f(x)+m=0在[,e]内两个不等的实根时,求实数m的取值范围;
(2)如果g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,求证:g′(px1+qx2)<0, (其中p,q是正常数,p+q=1,p≤q)。

查看答案和解析>>

科目: 来源:0128 模拟题 题型:解答题

已知函数f(x)=[3ln(x+2)-ln(x-2)]。
(1)求x为何值时,f(x)在[3,7]上取得最大值;
(2)设F(x)=aln(x-1)-f(x),若F(x)是单调递增函数,求a的取值范围。

查看答案和解析>>

科目: 来源:0127 模拟题 题型:解答题

设函数f(x)=x2-alnx与g(x)=x-a的图像分别交直线x=1于点A,B,且曲线y=f(x)在点A处的切线与曲线y=g(x)在点B处的切线平行。
(1)求函数f(x),g(x)的表达式;
(2)设函数h(x)=f(x)-g(x),求函数h(x)的最小值;
(3)若不等式f(x)≥m·g(x)在x∈(0,4)上恒成立,求实数m的取值范围。

查看答案和解析>>

同步练习册答案