相关习题
 0  21707  21715  21721  21725  21731  21733  21737  21743  21745  21751  21757  21761  21763  21767  21773  21775  21781  21785  21787  21791  21793  21797  21799  21801  21802  21803  21805  21806  21807  21809  21811  21815  21817  21821  21823  21827  21833  21835  21841  21845  21847  21851  21857  21863  21865  21871  21875  21877  21883  21887  21893  21901  266669 

科目: 来源:江苏同步题 题型:解答题

如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求二面角A﹣OD﹣C的余弦值.

查看答案和解析>>

科目: 来源:江苏同步题 题型:解答题

选做题
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,
AF=AB=BC=FE=AD=1.
(1)求异面直线BF与DE所成的角的大小;
(2)求二面角A﹣CD﹣E的余弦值.

查看答案和解析>>

科目: 来源:江苏期末题 题型:解答题

如图,已知正方体ABCD﹣A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D⊥平面PQR;
(2)设二面角B1﹣PR﹣Q的大小为θ,求|cosθ|.

查看答案和解析>>

科目: 来源:山东省期末题 题型:解答题

如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:A1O∥平面AB1C;
(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

科目: 来源:山东省月考题 题型:解答题

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
(1)求MN的长;
(2)a为何值时,MN的长最小;
(3)当MN的长最小时,求面MNA与面MNB所成二面角α的大小.

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E 在线段 PC 上,PC⊥平面BDE。
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点。
(1)求点C到平面A1ABB1的距离;
(2)若AB1⊥A1C,求二面角A1-CD-C1的平面角的余弦值。

查看答案和解析>>

科目: 来源:月考题 题型:解答题

如图,在正三棱柱ABC﹣中,点D是棱AB的中点,BC=1,A=
(1)求证:B∥平面DC;
(2)求二面角D﹣C﹣A的大小.

查看答案和解析>>

科目: 来源:月考题 题型:解答题

如图,在正三棱柱ABC﹣中,点D是棱AB的中点,BC=1,A=
(1)求证:B∥平面DC;
(2)求二面角D﹣C﹣A的大小.

查看答案和解析>>

科目: 来源:同步题 题型:解答题

如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求二面角B﹣AP﹣D的余弦值.

查看答案和解析>>

同步练习册答案