相关习题
 0  21903  21911  21917  21921  21927  21929  21933  21939  21941  21947  21953  21957  21959  21963  21969  21971  21977  21981  21983  21987  21989  21993  21995  21997  21998  21999  22001  22002  22003  22005  22007  22011  22013  22017  22019  22023  22029  22031  22037  22041  22043  22047  22053  22059  22061  22067  22071  22073  22079  22083  22089  22097  266669 

科目: 来源:模拟题 题型:解答题

如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=a。
(1)求证:AD⊥B1D;
(2)求证:A1C∥平面AB1D;
(3)求点A1到平面AB1D的距离。

查看答案和解析>>

科目: 来源:0104 模拟题 题型:解答题

在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上,
(1)求证:BC⊥A1B;
(2)若AD=,AB=BC=2,P是AC的中点,求三棱锥P-A1BC的体积。

查看答案和解析>>

科目: 来源:0105 模拟题 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,CB=1,CA=,,AA1=,M为侧棱CC1上一点,AM⊥BA1
(1)求证:AM⊥平面A1BC;
(2)求二面角B-AM-C的大小;
(3)求点C到平面ABM的距离。

查看答案和解析>>

科目: 来源:0105 模拟题 题型:解答题

如图,直二面角D-AB-E,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE。
(1)求证AE⊥平面BCE;
(2)求二面角B-AC-E的大小。

查看答案和解析>>

科目: 来源:0125 模拟题 题型:解答题

如图所示,在正三棱柱ABC-A1B1C1中,AA1=3,AB=2,D是A1B1的中点,E在线段CC1上且C1E=2,
(Ⅰ)证明:DC⊥面ABE;
(Ⅱ)求二面角D-AE-B的大小.

查看答案和解析>>

科目: 来源:福建省高考真题 题型:解答题

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点。
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)求点A到平面PCD的距离。

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC。
(1)证明:A1C⊥平面BED;
(2)求二面角A1-DE-B的大小。

查看答案和解析>>

科目: 来源:北京模拟题 题型:解答题

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点,
(Ⅰ) 求证:AC⊥SD;
(Ⅱ) 若SD⊥平面PAC,求二面角P-AC-D的大小;
(Ⅲ) 在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

科目: 来源:北京模拟题 题型:解答题

如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC,
(Ⅰ)求证:AM⊥平面EBC;
(Ⅱ)求二面角A-EB-C的大小.

查看答案和解析>>

科目: 来源:0112 模拟题 题型:解答题

如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC⊥平面ABC;
(Ⅱ)设CD=a,求三棱锥A-BFE的体积.

查看答案和解析>>

同步练习册答案