相关习题
 0  227308  227316  227322  227326  227332  227334  227338  227344  227346  227352  227358  227362  227364  227368  227374  227376  227382  227386  227388  227392  227394  227398  227400  227402  227403  227404  227406  227407  227408  227410  227412  227416  227418  227422  227424  227428  227434  227436  227442  227446  227448  227452  227458  227464  227466  227472  227476  227478  227484  227488  227494  227502  266669 

科目: 来源: 题型:解答题

16.数列{an}的通项公式an=n2•2n,求Sn

查看答案和解析>>

科目: 来源: 题型:选择题

15.设函数f(x)=($\frac{2}{3}$)x-($\frac{3}{2}$)x+$\frac{1}{2}$,若f(t)+f(t-4)<1,则实数t的取值范围是(  )
A.t<2B.t<4C.t>2D.t>4

查看答案和解析>>

科目: 来源: 题型:选择题

14.函数f(x)=x2-4x+3(  )
A.在(-∞,2)内是减函数B.在(-∞,4)内是减函数
C.在(-∞,0)内是减函数D.在(-∞,+∞)内是减函数

查看答案和解析>>

科目: 来源: 题型:填空题

13.函数y=x2-2的增区间为[0,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

12.求证:$\frac{sin(α+β)sin(α-β)}{s{in}^{2}αco{s}^{2}β}$=1-$\frac{ta{n}^{2}β}{ta{n}^{2}α}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(cosx+sinx,2cosx)$\overrightarrow{n}$=(cosx-sinx,-sinx).
(I)求f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$的对称中心;
(II)将函数y=f(x)的图象向右平移$\frac{π}{8}$个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若α为锐角,且g(α$+\frac{π}{6}$)=$\frac{4\sqrt{2}}{5}$,求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目: 来源: 题型:选择题

10.在△ABC中,若sinAsinBtanC<0,则△ABC(  )
A.锐角三角形B.直角三角形
C.钝角三角形D.锐角或钝角三角形

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的图象如图所示,将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度得到函数g(x)的图象,则函数g(x)的解析式为(  )
A.g(x)=sin(2x-$\frac{π}{3}$)B.g(x)=sin(2x+$\frac{π}{6}$)C.g(x)=-sin(2x-$\frac{π}{3}$)D.g(x)=sin(4x+$\frac{π}{6}$)

查看答案和解析>>

科目: 来源: 题型:填空题

8.不等式x+$\frac{a}{x}$>1(a∈R)在x∈(0,+∞)上恒成立的条件是$(\frac{1}{4},+∞)$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知α,β是锐角,α+β≠$\frac{π}{2}$,且满足3sinβ=sin(2α+β).
(1)求证:tan(α+β)=2tanα;
(2)求证:tanβ$≤\frac{\sqrt{2}}{4}$,并求等号成立时tanα与tanβ的值.

查看答案和解析>>

同步练习册答案