相关习题
 0  228714  228722  228728  228732  228738  228740  228744  228750  228752  228758  228764  228768  228770  228774  228780  228782  228788  228792  228794  228798  228800  228804  228806  228808  228809  228810  228812  228813  228814  228816  228818  228822  228824  228828  228830  228834  228840  228842  228848  228852  228854  228858  228864  228870  228872  228878  228882  228884  228890  228894  228900  228908  266669 

科目: 来源: 题型:解答题

5.在等差数列{an}中,a1=4,公差d≠0,且a1,a7,a10成等比数列,若该数列前n项和Sn=11,试确定项数n.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知非空集合A是由一些函数组成,满足如下性质:
①对任意f(x)∈A,f(x)均存在反函数f-1(x),且f-1(x)∈A;
②对任意f(x)∈A,方程f(x)=x均有解;
③对任意f(x)、g(x)∈A,若函数g(x)为定义在R上的一次函数,则f(g(x))∈A;
(1)若f(x)=${(\frac{1}{2})^x}$,g(x)=2x-3均在集合A中,求证:函数h(x)=${log_{\frac{1}{2}}}$(2x-3)∈A;
(2)若函数f(x)=$\frac{{{x^2}+a}}{x+1}$(x≥1)在集合A中,求实数a的取值范围;
(3)若集合A中的函数均为定义在R上的一次函数,求证:存在一个实数x0,使得对一切f(x)∈A,均有f(x0)=x0

查看答案和解析>>

科目: 来源: 题型:选择题

3.设{an}是公比为q(q≠1)的无穷等比数列,若{an}中任意两项之积仍是该数列中的项,则称{an}为“封闭等比数列”.给出以下命题:
(1)a1=3,q=2,则{an}是“封闭等比数列”;
(2)a1=$\frac{1}{2}$,q=2,则{an}是“封闭等比数列”;
(3)若{an},{bn}都是“封闭等比数列”,则{an•bn},{an+bn}也都是“封闭等比数列”;
(4)不存在{an},使{an}和{an2}都是“封闭等比数列”;
以上正确的命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:填空题

2.设整数n≥3,集合P={1,2,…,n},A,B是P的两个非空子集.则所有满足A中的最大数小于B中的最小数的集合对(A,B)的个数为:(n-2)•2n-1+1.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知公差为d的等差数列{an}的前n项和为Sn,若$\frac{S_5}{S_3}$=3,则$\frac{a_5}{a_3}$=$\frac{17}{9}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设x∈(0,$\frac{π}{2}$],则下列命题:(1)x≥sinx;(2)sinx≥xcosx;(3)y=$\frac{sinx}{x}$是单调减函数;(4)若sinkx≥ksinx恒成立,则正数k的取值范围是0<k≤1;其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

19.设x∈(0,$\frac{π}{2}$],则下列命题:(1)x≥sinx;(2)sinx≥xcosx;(3)y=$\frac{sinx}{x}$是单调减函数,其中真命题的个数是(  )
A.,0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:填空题

18.定义函数f(x)如下:对于实数x,如果存在整数m,使得|x-m|<$\frac{1}{2}$,则f(x)=m,则下列结论:
(1)f(x)是实数R上的递增函数;
(2)f(x)是周期为1的函数;
(3)f(x)是奇函数;
(4)函数f(x)的图象与直线y=x有且仅有一个交点,
则正确的结论的序号是(3).

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示的多面体EF-ABCD中,AF⊥底面ABCD,AF∥CE,四边形ABCD为正方形,AF=2AB=2CE.
(1)求证:EF⊥平面BED;
(2)当三棱锥E-BDF的体积为4时,求多面体EF-ABCD的表面积.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知点F是抛物线x2=4y的焦点,定点M(2,3),点P是该抛物线上的动点(点P不在直线MF上),则△PMF周长的最小值为4+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案