相关习题
 0  231381  231389  231395  231399  231405  231407  231411  231417  231419  231425  231431  231435  231437  231441  231447  231449  231455  231459  231461  231465  231467  231471  231473  231475  231476  231477  231479  231480  231481  231483  231485  231489  231491  231495  231497  231501  231507  231509  231515  231519  231521  231525  231531  231537  231539  231545  231549  231551  231557  231561  231567  231575  266669 

科目: 来源: 题型:选择题

12.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{1}}$是两个不共线的向量,且$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$与$\overrightarrow{b}$=-$\frac{1}{3}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$共线,则实数λ=(  )
A.-1B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.设知函数f(x)=$\frac{1}{x}$-x+alnx(a∈R)(e=2.71828…是自然对数的底数).
(Ⅰ)若函数f(x)在点(1,f(1))处的切线为y=0,求实数a的值;
(Ⅱ)若函数f(x)在定义域上不单调,求a的取值范围;
(Ⅲ)设函数f(x)的两个极值点为x1和x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k,是否存在a,使得k≤$\frac{2e}{{{e^2}-1}}$a-2?若存在,求出a的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知正三棱锥S-ABC中,SA=x,AB=1,SA与BC的距离为d,则$\underset{lim}{x→1}$d=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为4,椭圆的离心率为$\frac{\sqrt{3}}{2}$.设点M是椭圆上不在坐标轴上的任意一点,过点M的直线分别交x轴、y轴于A、B两点上,且满足$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$.
(1)求证:线段AB的长是一定值;
(2)若点N是点M关于原点的对称点,一过原点O且与直线AB平行的直线与椭圆交于P、Q两点(如图),求四边形MPNQ面积的最大值,并求出此时直线MN的斜率.

查看答案和解析>>

科目: 来源: 题型:填空题

8.若函数f(x)=$\left\{\begin{array}{l}{6^x}-m,\begin{array}{l}{x<1}\end{array}\\{x^2}-3mx+2{m^2},x≥1\end{array}$恰有2个零点,则实数m的取值范围是[$\frac{1}{2}$,1)∪[6,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,已知S-ABCD为正四棱锥,AB=2,SA=3,求棱锥的高和棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),过椭圆的右焦点F任作一条直线交椭圆C于A,B两点,过椭圆中心任作一条直线交椭圆C于M,N两点.
(Ⅰ)求证:AM与AN的斜率之积为定值;
(Ⅱ)若2a•|AB|=|MN|2,试探究直线AB与直线MN的倾斜角之间的关系.

查看答案和解析>>

科目: 来源: 题型:解答题

5.讨论当k为何值时,直线y=kx+2与圆x2+y2=1:
(1)相交?
(2)相切?
(3)相离?

查看答案和解析>>

科目: 来源: 题型:解答题

4.椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的右焦点F,过焦点F的直线l0⊥x轴,P(x0,y0)(x0y0≠0)为C上任意一点,C在点P处的切线为l,l与l0相交于点M,与直线l1:x=3相交于N.
(I) 求证;直线$\frac{{x}_{0}x}{3}$+$\frac{{y}_{0}y}{2}$=1是椭圆C在点P处的切线;
(Ⅱ)求证:$\frac{|FM|}{|FN|}$为定值,并求此定值;
(Ⅲ)请问△ONP(O为坐标原点)的面积是否存在最小值?若存在,请求出最小及此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

3.对任意实数m,n定义运算⊕:m⊕n=$\left\{\begin{array}{l}n,m-n≥1\\ m,m-n<1\end{array}$,已知函数f(x)=(x2-1)⊕(4+x),若函数F(x)=f(x)-b恰有三个零点,则实数b的取值范围为-1<b≤2.

查看答案和解析>>

同步练习册答案