13.对于一个向量组$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3$,…,$\overrightarrow{a_n}$(n≥3,n∈N*),令$\overrightarrow{S_n}$=$\overrightarrow{a_1}$+$\overrightarrow{a_2}$+$\overrightarrow{a_3}$+…+$\overrightarrow{a_n}$,如果存在$\overrightarrow{a_p}$(p∈N*),使得|$\overrightarrow{a_p}$|≥|$\overrightarrow{S_n}$-$\overrightarrow{a_p}$|,那么称$\overrightarrow{a_p}$是该向量组的“长向量”
(1)若$\overrightarrow{a_3}$是向量组$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$的“长向量”,且$\overrightarrow{a_n}$=(n,x+n),求实数x的取值范围;
(2)已知$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$均是向量组$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$的“长向量”,试探究$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$的等量关系并加以证明.